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The mechanical behavior of honeycombs with circular hierarchy under in-plane loading was 

investigated using analytical and numerical methods. To obtain the first-degree hierarchy, 

the combinations of the cell walls of the hexagonal base structure were replaced with smaller 

circular elements. Besides, a new parameter was obtained to control the material ability to 

resist deformations by applying different thickness status (heterogeneity). Effective Young’s 

module and effective Poisson’s ratio of the hierarchical structure were calculated by 

applying Castigliano's theorem. The effective shear modulus was also determined with the 

help of the equation for isotropic materials based on classical strength of materials. To easily 

interpret the effects of hierarchy and different thickness status on the non-hierarchical 

honeycomb, these mechanical properties were normalized with the mechanical properties 

displayed by the ordinary honeycomb. The effect of the scaling factor which controls the 

size of the circular geometry, and the heterogeneity factor which controls the wall thickness 

ratio between ones of base and hierarchical parts on the elastic properties are studied. The 

findings showed that by changing the scaling and heterogeneity factor, structures with 2 

times the stiffness and 0.3 times the effective Poisson’s ratio of an ordinary honeycomb 

having the same average density is obtained. 

 

1. Introduction 

Nowadays, the phenomenon of innovation has gained a 

considerable growing interest in every field, especially 

engineering. In order to meet the increasing demands in 

terms of performance and cost, the development of material 

technology has become especially crucial. One of the most 

important advancements in the field of material science and 

engineering stems from the exploration and manufacture of 

materials with cellular structure [1]. In addition to their 

superiority in terms of mechanical, thermal, electrical and 

acoustical properties, the most important advantage of 

cellular materials is their low density compared to other solid 

materials. Materials with high strength and high energy 

absorption properties even though they have low density and 
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therefore low weight due to the pores in them, are called 

cellular solid materials. While cellular materials can be 

artificially produced from polymers and metals, there are 

many examples of them in nature such as wood, leaf, animal 

bone, plant stem and honeycombs [2-8]. 

There is an abundant use of hierarchical cellular 

structures made of different materials, and of various sizes in 

nature. This can be exemplified by a human bone rich in 

hierarchy [9-14]. Inspired by nature, engineers, designers, 

and architects incorporate hierarchical structures in their 

work. So, the usage of the concept of hierarchy in a structure 

has come into being simultaneously in many different 

application areas such as Eiffel's Tower, Garabit Viaduct and 

Harbour Bridge [15,16]. The main purpose of introducing 
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hierarchy is to improve the mechanical response of the 

structure without using different types of materials, changing 

the elastic properties of the material, and using more material 

to build up the structure. Hierarchical structures can be 

created by adding material to the most stressed parts, which 

are joints of the structure under loads. This method improves 

the efficiency of load carrying capacity [17]. 

Previous studies have explored the effect of hierarchy on 

mechanical properties of regular cellular structures [18,19, 

20-22]. For example, Taylor and Smith [23] investigated the 

effect of square and triangular super and sub-structures on 

in-plane mechanical properties of a honeycomb cell model. 

In addition, they explored the negative Poisson’s ratio effect 

observed as a result of hierarchy. Burgueno and Quagliata 

[24] studied hierarchical designs of beams made of bio-

composite polymers. They found that hierarchical structures 

can compete with other traditional structures for load 

applications despite the decrease in the density of the 

structure. Fan et al. [25] have showed that two-dimensional 

hierarchical structures can be used to produce sandwiched 

composite panels with better stiffness, buckling strength, 

plastic collapse strength, and damage tolerance compared to 

solid materials. Zhang et al. have tried to make the cell walls 

multi-layered to increase the energy absorption capacity of 

the honeybee comb model, thus reporting that they have 

obtained a model with higher absorptivity [26]. Qing has 

worked on creating a three-dimensional hierarchical model 

of wood [27]. This model is used to represent the wooden 

structures at different scale levels. Transverse compression 

and shear collapse states of hierarchical corrugated truss 

structures were investigated by Kooistra [14]. The 

mechanical properties such as elastic buckling and yielding 

of the larger and smaller struts were examined. Ajdari et al. 

[28] studied the mechanical response of 2-dimensional 

honeycomb structures having hexagonal hierarchies using an 

analytical model validated with numerical simulations and 

experiments. They demonstrated that mechanical properties 

of the honeycomb structure such as the elastic modulus and 

Poisson's ratio can be modified by adding a hierarchy to the 

structure. With the information obtained from the researches 

made so far, in many engineering applications such as 

impact/blast energy absorption, thermal or sound isolation, 

the hierarchical honeycomb structures are preferred due to 

their low density and high effective strength. 

In this study, to achieve lightweight and better-

performing structures, we replaced the corners of the 

ordinary hexagonal lattice with smaller sized circles with a 

radius proportional to the edge length of the hexagonal base 

part by the factor of 𝛾1 (i.e., scaling factor or length scales). 

In this way, the hexagonal base structure has been introduced 

with the first-order hierarchy by circular hierarchy elements. 

We have also shown that the heterogeneity factor (i.e., wall 

thickness ratio, 𝛼𝑡 = 𝑡ℎ 𝑡𝑛⁄ ) influences the mechanical 

properties and can be used to tune them in addition to the 

hierarchy scaling factor.  As a result of keeping overall 

density constant, the wall thickness for the homogeneous 

hierarchical structure is decreased compared to ordinary 

honeycomb's one. On the other hand, the wall thicknesses of 

the hierarchical and base parts of the heterogeneous structure 

change depending on the value of the heterogeneity factor 

besides the scale factor. Figure 1 shows the structural 

hierarchies of honeycomb structures investigated in our 

work. 

 

 
Figure 1. Ordinary honeycomb, first order hexagonal hierarchy 

and first order circular hierarchical honeycomb 

Because we seek to determine the advantages of the 

hierarchical model investigated in this work, the boundary 

conditions, loading case, structural and material properties 

are adapted from Ajdari et al. [28] as a reference model. He 

set the wall length as 20 mm, relative density as 0.02, 0.06 

and 0.10, and the material as ABS (Acrylonitrile Butadiene 

Styrene) polymer with Young's modulus of 𝐸𝑠= 2300 MPa 

and Poisson's ratio of 𝜈𝑠= 0.3 in his article. According to 

Gibson et al. [18], in-plane elastic properties such as stiffness 

and strength mainly depend on the bending deformation of 

cell edges under transverse loading. This assumption is 

particularly correct for slender beams that have a long length 

compared to their depth. To demonstrate this approach's 

accuracy, strain energy distribution was examined in the 

ordinary honeycomb using the parameters specified in 

Ajdari's study [28], and the results are shown in Table 1. 

Table 1. Strain energy distribution of ordinary honeycomb 

Parameters Axial Shear Bending 

Es 2300 MPa 

1.63E-3 kJ 1.7E-3 kJ 0.217 kJ 

νs 0.3 

F 1 N 

a 20 mm 

tn 1 mm 

  0.74 % 0.77 % 98.49 % 

 

As seen in the table, the rate of the other reaction 

expressions in the strain energy stored in the structure cannot 

exceed 1.5 %, and the reaction moment that causes bending 

constitutes all the remaining energy. For this reason only the 

bending reaction moment is taken into account in all 

subsequent operations during the application of Castigliano's 

theorem. 

The effective mechanical properties are a commonly 

used phenomenon for a heterogeneous body to be defined by 

benefiting from the relationship between the average stresses 

and the average strains. To compare these effective 

mechanical properties with the reference model, they are 

normalized with the ones which are the equations of     

𝐸𝑟𝑒𝑓 = 1.5𝐸𝑠𝜌3 and 𝜐 = 1 governed Young’s modulus and 

Poisson’s ratio of ordinary honeycomb, respectively. 

The measure of the hierarchy is specified according to the 

scaling factor which is the ratio of the specific dimension of 

the introduced hierarchy (edge length for hexagon geometry 

and radius for circular geometry), to the edge length of the 

ordinary hexagonal lattice as described in Figure 1 (i.e., 
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𝛾1
ℎ𝑒𝑥 = 𝑏 𝑎⁄  and 𝛾1

𝑐𝑖𝑟𝑐 = 𝑅 𝑎⁄ ). For a first-order circular 

hierarchical honeycomb, 0 ≤ R ≤ 𝑎 2⁄  so that, 0 ≤ 𝛾1 ≤ 0. 

The case, 𝛾1 = 0, where there is no hierarchy corresponds to 

a regular honeycomb. The relative density of a structure with 

unit depth is the ratio of the area cell walls projected onto the 

plane of the structured to the full area covered by the unit 

cell, which is given by: 

𝜌𝑐𝑖𝑟𝑐
ℎ𝑒𝑡𝑒𝑟 =

2𝑡𝑛

𝑎√3
[1 + 𝛾1 (

4𝜋

3
𝛼𝑡 − 2)] (1) 

For an ordinary honeycomb structure (i.e., when 𝛾1 = 0)  

𝜌 = 2𝑡 𝑎√3⁄  and for a first-order circular hierarchical 

honeycomb structure with homogenous thickness        

𝜌𝑐𝑖𝑟𝑐
ℎ𝑜𝑚 = 2𝑡[1 + 𝛾1(4𝜋

3⁄ − 2)] 𝑎√3⁄  (i.e., the case of     

𝛼𝑡 = 1)). It is apparent in the relative density equation that 

the ratio, 𝑡 𝑎⁄  has to decrease as the 𝛾1 increases to keep the 

relative density constant. 

We have studied the in-plane effective elastic properties 

of the circular hierarchical honeycomb under plain stress 

condition analytically using Castigliano's theorem, and 

numerically using Finite Element Analysis (FEA). The 

analytical model for estimating the normalized effective 

Young’s modulus, the normalized effective Poisson's ratio 

and the normalized effective shear modulus of the circular 

hierarchical honeycomb are presented in Section 2 and 3, 

respectively. The boundary conditions and loading case used 

to derive analytical model in Section 2 with the periodic 

boundary conditions applied in FEA are also summarized. 

The details of finite element analysis performed 

parametrically via Abaqus CAE for numerical investigation 

is given in Section 3. In Section 4, the in-plane elastic 

properties of the circular hierarchical honeycomb are 

presented and compared with the hexagonal hierarchy 

studied by Ajdari et al. [28] and ordinary honeycomb. Also, 

the possibilities for further improvement of the mechanical 

performance of the structure is discussed. 

2. Normalized Effective Young’s Modulus 

Alberto Castigliano, an Italian engineer, outlined a 

method to determine the displacement at a point in a body, 

referred to as Castigliano’s second theorem. The theorem 

applies only to materials with linear-elastic behavior. 

According to the theorem, the displacement at a point to be 

determined is equal to the first partial derivative of the strain 

energy in the body to the external force acting at that point 

and in the force's direction. So, we use Castigliano’s Second 

theorem to find out the deformations under the in-plane 

uniaxial loading case for estimating the effective properties 

of the circular hierarchical structures analytically. It has been 

shown that lattices having three-fold symmetry exhibit 

macroscopically isotropic behavior [29]. Therefore, we also 

assumed that the structure is made of an isotropic linear 

elastic material with elastic modulus, 𝐸𝑠 and Poisson’s ratio, 

𝜈𝑠 in this work. Based on the assumption, it is possible to 

describe their mechanical behavior conveniently by using 

only two constants. Figure 2(a) shows the uniaxial loading 

and the boundary conditions of a finite size structure. Under 

these conditions, the contraction in the y-axis and the 

elongation in the x-axis of the structure are 𝛿𝑦 and 𝛿𝑥, 

respectively. 

Circular hierarchical honeycomb consists of the unit cell 

specified in Figure 2(b).

  
(a) (b) 

 
(c) 

Figure 2. (a) Uniaxial-loading of the structure with a far-field force 𝐹∞ (b) Symmetry axis and points of interest in a representative 

honeycomb (c) Free-body diagram of the structure used for analytical calculations
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According to Saint-Venant’s principle, the stress tends to 

reach a uniform value when we take the cross-section 

sufficiently far from the point where any external load is 

applied since the localized deformation effect caused by 

external loads vanishes. Consequently, assuming that the 

part of the structure we examined is far enough from the 

application point of the load, the far-field stress, 𝜎𝑦𝑦 =

−(2 3⁄ ) 𝐹 𝑎⁄ , occurs in the unit cell due to a load of F 

imposed in the y-direction. So, the average strain is 𝜀𝑦𝑦 =

−4𝛿𝑦 𝑎√3⁄ . The mechanical behavior of the entire structure 

can be studied by using subassembly, which is formed with 

L1 and L2 lines passing through the midpoints of the edges, 

as seen in Figure 2(b) [28]. 

The theoretical analysis presented in this section follows 

the approach presented in Ajdari et al. [28]. To make the 

analysis clear, it is important to examine the hierarchical 

honeycomb given in Figure 2(b). The midpoints of several 

edges of the given structure are named P1 to P5. In the case 

of macroscopic normal stress, 𝜎𝑥𝑥 and shear stress, 𝜎𝑥𝑦 is the 

average force per unit length transmitted along a vertical line 

specified by L2. The net horizontal and vertical forces on this 

line are zero because only 𝜎𝑦𝑦 is not zero. Moreover, they do 

not transmit the bending moments because it would remove 

the horizontal symmetry of the structure. Hence, under a 

non-zero macroscopic stress 𝜎𝑦𝑦, the edges cut by L2, are 

unloaded. 

Considering the edges of the structure cut by L1, each bar 

is subjected to the force 𝐹 = −(3𝜎𝑦𝑦𝑎) 2⁄ . Due to the 

symmetry in the structure, bending cannot occur in the struts 

cut by line L1, otherwise symmetry would be violated. This 

means that no bending moment is transmitted by the bars. 

Net horizontal force is zero across L1 because 𝜎𝑥𝑦 = 0. In the 

lower part of the structure cut by the L1 line, a rightward 

force at P1 is compensated by another leftward force at P3. 

Therefore, it can be stated that the forces at points P1, P3, and 

P4 are vertical and F in magnitude. 

Figure 2(c) presents the free body diagram of the 

subassembly of the circular hierarchical structure exposed 

under loading case as shown. The lower part of the 

subassembly causes the force and moment reactions (𝑁1𝑃, 

𝑀1𝑃, 𝑁2𝑃, and 𝑀2𝑃) at points 1 and 2. The vertical forces at 

points 1, 2, and 4 are used to determine the effective elastic 

modulus, whereas horizontal dummy forces (no actual load) 

are placed at 2, 3 and 4 in order to determine the lateral 

displacement using Castigliano’s Method, to obtain the 

Poisson’s ratio. By using vertical force equilibrium and 

moment balance equations for the subassembly, 𝑁2𝑃 and 

𝑀2𝑃 can be written as a function of 𝑁1𝑃, 𝑀1𝑃, and 𝐹. To 

calculate the bending energy stored in the structure, the strain 

energy of the curved and linear beam elements that make up 

the subassembly should be calculated separately and 

summed as shown in the following expression: 

𝑈(𝐹, 𝑁1𝑃, 𝑀1𝑃) = ∫ 𝑀2 (2𝐸𝑠𝐼)⁄ 𝑑𝑥 +∑ ∫ (𝑀2𝑅) (2𝐸𝑠𝐼)⁄ 𝑑𝜃, 

where 𝑀 is the bending moment at location 𝑥 for the linear 

beam, and 𝜃 for the curved beam; R is the radius of the 

curved beam, 𝐸𝑠 is the elastic modulus of the structure 

material, I is the cross-section area moment of inertia (The 

moment of inertia which is calculated using the wall 

thickness t for the unit depth structure with the rectangular 

section; i.e., 𝐼 = 𝑡3 12⁄ ). U is a quadratic function of the 

quantities F, 𝑁1𝑃, and 𝑀1𝑃. 

Because of the symmetry of the subassembly, it is 

assumed that there is no vertical displacement and rotation at 

point 1. So that, the equations 𝜕𝑈 𝜕𝑁1𝑃⁄ = 0 and 

𝜕𝑈 𝜕𝑀1𝑃⁄ = 0 are obtained by application of Castigliano’s 

method. These two equivalence relations allow us to derive 

the functions of 𝑁1𝑃 and 𝑀1𝑃 expressions in terms of F: 

𝑁1𝑃 = 𝐹(0.529 + 0.138 𝛾1⁄ ), 𝑀1𝑃 = 𝑎𝐹(−0.029 +
0.253𝛾1). Using the equation of 𝛿𝑦 = 𝑑𝑈 𝑑𝐹⁄  at point 4 

allows finding the vertical displacement of the subassembly. 

We can express the displacement as a function of the 𝐹 

variable by substituting above 𝑁1𝑃 and 𝑀1𝑃 relations, and 

finally       𝛿𝑦 = √3𝐹𝑎3 (72𝐸𝑠𝐼𝑛𝑓(𝛾1, 𝛼𝑡))⁄  is obtained, 

where (𝛾1, 𝛼𝑡) = √3 [(0.75 − 4.5𝛾1 + 9𝛾1
2 − 6𝛾1

3)⁄  

+ 𝛼𝑡
−3(0.993𝛾1 − 6.095𝛾1

2 + 10.992𝛾1
3)]. The ratio of 

the average stress (−2𝐹 3𝑎⁄ ) and the average strain 

(−4𝛿𝑦 𝑎√3⁄ ) allows us to compute the effective elastic 

modulus of the model: 

𝐸 𝐸𝑠⁄ = (𝑡𝑛 𝑎⁄ )3𝑓(𝛾1, 𝛼𝑡) (2) 

For homogeneous thickness (𝑡𝑛 = 𝑡ℎ), 𝛼𝑡 is equal to 1. If 

the heterogeneity factor is greater than 1, then the hierarchy 

part of the structure becomes thicker than the base part (𝑡ℎ >
𝑡𝑛). Otherwise, the more strength region is the base part of 

the body (𝑡𝑛 > 𝑡ℎ). 

To obtain the maximum value of the normalized effective 

elastic modulus, the term 𝑡𝑛 𝑎⁄  in Eq. (2) should be converted 

to its equivalent in terms of 𝛼𝑡 and 𝛾1 by using Eq. (1) and 

heterogeneity factor. Then, Taylor's theorem for a function 

of two variables is used, as given in Eq. (3), to find the local 

maximum of the resulting expression of the normalized 

effective elastic modulus. 

𝜕2(𝐸 𝐸𝑠⁄ )

𝜕𝛾1
2

𝜕2(𝐸 𝐸𝑠⁄ )

𝜕𝛼𝑡
2

−
𝜕

𝜕𝛼𝑡

(
𝜕(𝐸 𝐸𝑠⁄ )

𝜕𝛾1

) > 0 (3) 

The equation gives the stationary point 𝛾1= 0.279 and 

𝛼𝑡= 0.701, and then by substituting these values,  𝐸 𝐸𝑠⁄ = 

3.036𝜌3 is obtained. The stiffness of the first-order circular 

hierarchical honeycomb is slightly greater than twice of the 

stiffness of the ordinary honeycomb model [18], and is also 

marginally stiffener than the first-order hexagonal hierarchy 

[28]. 

To validate the analytical results, we simulated the 

mechanical response of the structure using finite element 

analysis (FEA). Two-dimensional hierarchical honeycombs 

were modeled using Abaqus 6.14 (SIMULIA, Providence, 

RI), where the structure is modeled with the BEAM22 

quadratic beam elements which take axial and shear 

deformations into account in addition to the bending 

deformation. However, the contribution of axial and shear 

deformations to the response of the structure is negligible, 

when the beams are slender i.e. the ratio, 𝑎 𝑡⁄  is large. The 

relative density of the structure is fixed by adjusting the 

thickness of the rectangular cross-section with the unit depth 

of the beams. It was also assumed that the structure is made 

of ABS polymer (Acrylonitrile Butadiene Styrene) with 

Young’s modulus 𝐸𝑠= 2300 MPa, 𝜈𝑠= 0.3. 
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Figure 3. Two-dimensional schematic representation of the idea 

of PBCs 

Periodic boundary conditions (PBCs) comprise a set of 

boundary conditions that allow us to split any large (infinite) 

system into small periodic parts called a unit cell and deal 

with discretely. PBCs are a consistently preferred approach 

for mathematical models and numerical investigations 

[30,31]. The idea of PBCs suggests a perfect two-

dimensional link between these repeating unit cells of which 

the periodic cellular structure is composed. This state is 

shown schematically in Figure 3. With the homogenization 

method based on strain energy studied by many researchers 

and prescribed periodic boundary conditions, the structure's 

effective mechanical properties can be determined from its 

unit cell. Finally, to reduce computational time and simplify 

the finite element simulation process, it is reasonable to use 

an RUC with orthogonal lattice instead of the whole body, as 

shown in the figure, utilizing PBCs and performing the 

numerical analysis parametrically with Python software. In 

this study, PBCs were applied during the analysis to reduce 

the model size and processing time. Furthermore, we used 

the Repetitive Unit Cells (RUC) in Figure 4 with orthogonal 

lattice vectors (a1, a2) in FE analysis due to allowing a more 

straightforward application of periodic boundary conditions. 

 
Figure 4. Repetitive Unit Cells and lattice vectors of the structure, 

and the points for periodic boundary conditions 

A set of kinematic boundary conditions is applied to the 

periodic hierarchical structure as seen Figure 4 such that it 

results in the displacement field can be denoted as in Table 

2. All nodes lying along the edges shown with the dashed 

lines in Figure 4(b) are connected to each other. In this way, 

the model behaves as if it is infinitely long and wide cellular 

structure but free to strain laterally [32]. As a result, we 

obtained an infinite cellular structure using this RUC, and 

eliminated the size effect (i.e., a size-independent structure). 

Table 2. Constraints used to apply periodic boundary conditions 

Constraints for PBCs 
Boundary 

Conditions 
 

𝑢𝐿𝑇 − 𝑢𝐿𝐵 = 𝜀𝑖̅(𝑥𝐿𝑇 − 𝑥𝐿𝐵) = 𝜀𝑖̅  ∆𝑥 = 𝑢𝑟1 
 

𝑢𝑅𝑇 − 𝑢𝑅𝐵 = 𝜀𝑖̅(𝑥𝑅𝑇 − 𝑥𝑅𝐵) = 𝑢𝑟1 
 

𝑢𝑅𝑀 − 𝑢𝐿𝑀 = 𝜀𝑖̅(𝑥𝑅𝑀 − 𝑥𝐿𝑀) = 𝑢𝑟2 
 

𝑣𝐿𝑇 − 𝑣𝐿𝐵 = 𝜀𝑗̅(𝑦𝐿𝑇 − 𝑦𝐿𝐵) = 𝑣𝑟1 
 

𝑣𝑅𝑇 − 𝑣𝑅𝐵 = 𝜀𝑗̅(𝑦𝑅𝑇 − 𝑦𝑅𝐵) = 𝑣𝑟1 
 

𝑣𝑅𝑀 − 𝑣𝐿𝑀 = 𝜀𝑗̅(𝑦𝑅𝑀 − 𝑦𝐿𝑀) = 𝑣𝑟2 
 

 

𝑢𝑟1 = 0 
 

𝑢𝑟2 = 𝑓𝑟𝑒𝑒 
 

𝑣𝑟1 = 𝑐𝑜𝑛𝑠. 
 

𝑣𝑟2 = 0 
 

𝑢𝐿𝐵 = 𝑣𝐿𝐵 = 0 
 

 

In order to facilitate the comparison with the reference 

body, the effective elastic modulus values of the circular 

hierarchical honeycomb are normalized with that of ordinary 

honeycomb, following Ajdari et al. [28]. The normalized 

effective Young’s modulus of the first-order circular 

hierarchical honeycombs for all values of 𝛾1 between 0 and 

0.5 is given in Figure 5. 

 
Figure 5. Normalized effective Young’s modulus of the 

honeycomb structure with circular hierarchy for different relative 

densities with respect to 𝛾1 

Neglecting the shear and axial deformations in the 

analytical model leads to discrepancies between theoretical 

and numerical results for higher relative-densities, i.e., for 

thicker cell walls where shear and axial deformations 

become essential. On the other hand, it is observed that the 

theoretical approach is entirely independent of the relative 

density. Though, a good agreement between numerical and 

analytical results is observed for low relative densities, see 

Figure 5. (a good approximation is only seen for the lowest 

density [32]). 

 
Figure 6. Normalized effective Young’s modulus of the 

honeycomb structure with circular hierarchy with respect to 𝛼𝑡 
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Figure 6 represents how the 2-dimensional curves 

representing different 𝛾1 values are affected by the 𝛼𝑡 

change. In this interaction, the most sensitive 𝛾1 curve to 𝛼𝑡 

is 𝛾1= 0.3 curve. In this case, it is seen that approximately 60 

percent of the edge length of the base part of the building is 

covered with circular geometry, which is the hierarchy 

element, and the remaining part remains the base structure, 

making the structure more sensitive to the thickness ratio. 

The reason why the curve, 𝛾1= 0.5, is never affected by the 

change of 𝛼𝑡 value is that there is no base structure in this 𝛾1 

value. 

 
Figure 7. Contour plot of normalized effective Young’s modulus 

as a function of the scaling factor and heterogeneity factor 

Figure 5 shows that the circular hierarchical structure 

with homogeneous thickness and a scaling factor of 𝛾1= 0.31 

has stiffness nearly 1.8 times of the ordinary honeycomb. 

The contour map in Figure 7 demonstrates that when both 

the scaling factor and the heterogeneity factor are left as free 

parameters, a maximum stiffness of approximately 2.1 times 

that of base structure can be obtained when 𝛾1= 0.28, and 

𝛼𝑡= 0.7. 

According to Figure 6, the following comments can be 

made about the values that 𝛼𝑡 can take. First of all, it should 

be known that 𝛼𝑡 can never be zero since it is the thickness 

ratio. The Contour graph shows that for the 𝛼𝑡 values 

between 0.1-0.2, the structure's sensitivity to the scale factor 

disappears. This is because the hierarchy part is very thin. 

Thus, the increase in the ratio of this part in the structure will 

not affect the results. The values between 0.3 and 0.4 indicate 

the transition zone. It displays ordinary honeycomb 

properties for a specific 𝛾1 range at approximately 0.4 and 

1.6. Between these two values, the stiffness of the structure 

increases non-linearly as 𝛼𝑡 increases initially and decreases 

to the reference structure's stiffness. With different 𝛾1 values 

at values higher than 1.6, we always obtain a structure with 

a lower strength than ordinary structure. 

If the same situation is interpreted for 𝛾1, the structure's 

stiffness is no longer affected by the ratio of the thickness of 

the base and the hierarchy parts at the values of 𝛾1 in the 

range of 0.45-0.5. The reason is that the length of the base 

part of the body in this value range is very short compared to 

that of the other part. It can be called the transition zone for 

the 𝛾1 range of 0.4-0.35. The stiffness value obtained for the 

0.35 and 0.05 values of 𝛾1 will be the same as ordinary 

honeycomb in the 𝛼𝑡 values in a specific range. For a widen 

𝛼𝑡 value range, the young's module of the structure is more 

than the reference structure between these two 𝛾1 values. The 

structure behavior in the range of 0-0.05 is almost the same 

as specified by 0.45-0.5. In this case, the base part's length 

will be larger than the one of the hierarchy part. For the 

specific area definition where the structure exhibits highly 

stiff behavior, the values of 𝛼𝑡 and 𝛾1 should remain between 

0.6-0.8 and 0.25-0.3, respectively. As mentioned earlier, the 

highest young's module value is reached when 𝛾1= 0.28, and 

𝛼𝑡= 0.7. The conclusion to be drawn in general is that 

ordinary honeycomb boundaries, reminiscent of a triangular 

geometry, are indicated by a gray closed-curve. The structure 

will be stiffer than the reference body as long as it is in this 

triangular region. Approximately, in the center of the area of 

this region, the structure will turn into the stiffest state. 

3. Normalized Effective Poisson’s Ratio & Normalized 

Effective Shear Modulus 

For a complete identification of effective mechanical 

properties of the structure modeled as linear elastic, an 

equation in which the Poisson's ratio can be represented in 

terms of 𝛾1 and also 𝛼𝑡 is needed. Therefore, Castigliano’s 

second theorem is used compute the lateral deformation of 

the structure subjected to uniaxial loading. The horizontal 

forces in Figure 2(c) are used as the dummy force in the 

energy expression used in Castigliano’s theorem. Following 

a procedure similar to the derivation of the elastic modulus 

equation, axial and shear deformation of the beams are also 

ignored in this analysis. 𝑁2𝑃  and 𝑀2𝑃  can be written as 

functions of 𝑁1𝑃, 𝑀1𝑃, 𝑃, and 𝐹 by using equations of 

equilibrium of subassembly. The summation of bending 

energy in all beams express the total energy stored in the 

subassembly under the loading case. So, 

𝑈(𝐹, 𝑃, 𝑁1𝑃 , 𝑀1𝑃)=∫ 𝑀2 (2𝐸𝑠𝐼)⁄ 𝑑𝑥 

+∑ ∫ (𝑀2𝑅) (2𝐸𝑠𝐼)⁄ 𝑑𝜃. According to the assumption of no 

displacement and no rotation at nodes 1 and 2, 𝜕𝑈 𝜕𝑁1𝑃⁄ =
0, and 𝜕𝑈 𝜕𝑀1𝑃⁄ = 0 can be written. These two conditions 

enable us to write 𝑁1𝑃  and 𝑀1𝑃  in terms of 𝑃 and 𝐹. This 

allows us to express the bending energy of the subassembly 

as a function of 𝑃 and 𝐹, 𝑈 = 𝑈(𝑃, 𝐹). Setting the dummy 

force 𝑃 to zero, the lateral displacement of the subassembly 

is computed from 𝛿𝑥
𝐹 = (𝜕𝑈 𝜕𝑃⁄ )𝑃=0  and the vertical 

displacement from 𝛿𝑦
𝐹 = (𝜕𝑈 𝜕𝐹⁄ )𝑃=0. The initial 

dimensions of the subassembly are 3𝑎 4⁄  and 𝑎√3 4⁄  in the 

x- and y-directions, respectively. Therefore, the effective 

Poisson’s ratio is obtained as 𝜈 = −𝜀𝑥 𝜀𝑦⁄ = −𝛿𝑥
𝐹 √3𝛿𝑦

𝐹⁄ , 

which gives: 

𝐴 = 𝛾1(−0.1655 + 1.0159𝛾1 − 1.6407𝛾1
2) +

          𝛼𝑡
3(−0.125 + 0.75𝛾1 − 1.5𝛾1

2 + 𝛾1
3)  

(4) 

𝐵 = 𝛼𝑡
3(−0.5 + 𝛾1)3 + 𝛾1(−0.1655 +

         1.0159𝛾1 − 1.8319𝛾1
2)  

(5) 

𝜈 = 𝐴
𝐵⁄  (6) 

For homogeneous thickness (𝑡𝑛 = 𝑡ℎ), 𝛼𝑡  is equal to 1. 

To obtain the maximum value of the effective Poisson’s 

ratio, Taylor's theorem for a function of two variables is used 

as given in Eq. (3). The value of the effective Poisson’s ratio 

is 𝜈= 1 at 𝛾1= 0, and the minimum value 0.2996 is reached 
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at 𝛾1= 0.326 and 𝛼𝑡= 6.57 x 10−6. However, this thickness 

ratio is too small for practical applications. Therefore, we 

consider physically reasonable value, 𝛼𝑡= 0.1 which 

provides a Poisson’s ratio, 𝜈= 0.3 that is very close to the 

minimum. Theoretical results were verified with finite 

element analysis of the periodic structure subjected to 

uniaxial loading. The normalized effective Poisson’s ratio of 

the first-order circular hierarchical honeycombs with 

homogeneous thickness for values of 𝛾1 between 0 and 0.5 

shown in Figure 8. 

 
Figure 8. Normalized effective Poisson’s ratio of the honeycomb 

structure with circular hierarchy for different relative densities 

with respect to 𝛾1 

The results obtained by numerical analysis converge the 

results obtained theoretically as the relative density value 

decreases. Among the results obtained from these two 

different approaches, the reason for the differences evident 

with increasing 𝜌 can be evaluated as neglect of the effects 

of axial and shear deformations in the theoretical approach. 

The adverse effects of this approach, which simplifies the 

computational process, decreases with the increase of 𝛾1 

values. So, the following conclusion can be made; the curved 

beam elements' sensitivity in the structure's hierarchy parts 

to the axial and shear deformation effects is less than the 

linear beams in the base part. As a result of the dominant 

hierarchy elements in the structure with increasing 𝛾1 values, 

neglecting these mentioned deformation types does not 

affect our results. Additionally, Figures 8 shows that the 

lowest effective Poisson’s ratio, 0.43 for the circular 

hierarchical honeycombs in the homogeneous thickness case 

(𝛼𝑡= 1) are achieved when 𝛾1 is 0.3 and 0.38, respectively. 

 

 
Figure 9. Normalized effective Poisson’s ratio of the honeycomb 

structure with circular hierarchy with respect to 𝛼𝑡 

It can be directly seen from the curves in Figure 9 that for 

𝛾1= 0.1 and 𝛾1= 0.5, the normalized effective Poisson's ratio 

of the structure does not change depending on the value of 

𝛼𝑡. In case the 𝛾1 value is 0.1, that is, the hierarchy part is 

almost absent in the structure, and the 𝛾1 value is 0.5, that is, 

the base part is not located in the structure, the body becomes 

unaffected by the values of the 𝛼𝑡. 

Another critical parameter when thinking about the 

mechanical properties of an isotropic material is the shear 

module. The shear modulus is a measure of the resistance of 

a structure against distortive effects when it experiences the 

forces parallel to the applied surface while they are opposite 

to each other. In fact, two parameters are sufficient to 

determine the mechanical properties of isotropic materials. 

Therefore, the third parameter can be expressed as a function 

of the other two ones. However, the 𝛼𝑡 and 𝛾1-related 

changes in the parameters of the hierarchical structure are not 

similar. Thus, it is difficult to predict the replacement of the 

shear module by considering Young’s modulus and 

Poisson's ratio. Hence, the rigidity of the structure under 

shear loads is obtained using the shear modulus equation for 

isotropic materials based on classical strength of materials. 

Shear modulus is governed by: 

𝐺 =
𝐸

2(1 + 𝜐)
 (7) 

In Figure 10(a), the normalized effective Poisson’s ratio 

values of the circular hierarchical structure are given. As 

seen in the figure, the effective Poisson's ratio value of the 

hierarchical structure decreases with the increase of 𝛾1. With 

the increase of the radius of the hierarchy element, that is, 

with the increase of 𝛾1, the structure becomes more resistant 

to lateral contraction caused by axial deformation. The 

physical meaning of ordinary honeycomb's normalized 

effective Poisson's ratio value is 1 is interpreted as follows; 

when the length of the structure under loading is extended or 

compressed by 1-unit in the direction of the applied force, 

the same amount of change perpendicular to the force 

direction is observed. However, in the region indicated by 

the blue-colored area, the approximate normalized effective 

Poisson ratio of the structure is between 0.3-0.4. It means 

that the effect of 1-unit change in the direction of force 

causes about 0.3-0.4-unit change in the lateral direction. 

Thus, it can be said that the hierarchy increases the stiffness 

of the structure against lateral deformation caused by 

longitudinal deformation in the direction of the force. The 

contour graph in Figure 10(a) shows that a minimum 

normalized effective Poisson’s ratio of approximately 0.3 

times that of base structure can be obtained when 𝛾1= 0.33 

and 𝛼𝑡= 0.1. 
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(a) (b) 

Figure 10. (a) Contour graph of normalized effective Poisson’s ratio, and (b) normalized effective shear modulus as a 

function of the scaling factor and heterogeneity factor 

On the other hand, the values of the normalized effective 

shear modulus of the circular hierarchical structure are given 

in Figure 10(b). Using Eq. (7), the value of the normalized 

effective shear modulus of the ordinary honeycomb structure 

is calculated as 0.25. A gray closed-curve indicates this value 

of the reference structure on the Contour graph, as in the 

contour graph given for the normalized effective Young’s 

modulus, the region where the shear modulus is stiffer 

against the shear loadings than the reference structure has the 

appearance of approximately triangular geometry. The 

contour graph in Figure 10(b) represents that a maximum 

normalized effective shear modulus of 0.65 can be obtained 

when 𝛾1= 0.3, and𝛼𝑡 = 0.7. 

Thus, it is clear that the mechanical performance is 

improved by using different thickness method when 

compared to the results of the heterogeneous case. 

4. Conclusion 

Figure 11 demonstrates all the effective elastic properties 

of the hierarchical structure. Normalized versions of these 

terms were given in the previous sections. Normalized terms 

allowed us to compare the hierarchical structure to ordinary 

honeycomb. Nevertheless, it is known that the actual values 

of these effective properties are also required during the 

design for designers. It is seen that the effective Young's 

modulus and the effective shear modulus in Figure 11(a)-(c) 

reach the maximum value at the same 𝛼𝑡 and approximately 

the same 𝛾1. As can be clearly seen from these graphs, a 

steady upward trend in Young's and shear modulus values is 

not observed when 𝛼𝑡 increases. 

Besides, the hierarchical and the base parts of the 

structure are quite thin compared to the other part when the 

alpha ranging from 0.1 to 2 get the extreme values. 

Therefore, the structure becomes the weakest in terms of the 

effective Young's and shear modulus as expected. And the 

minimum and maximum values of 𝛾1 are non-hierarchy   

(𝛾1= 0) and full-hierarchy (𝛾1= 0.5) structures, respectively. 

In the non-hierarchy state, the value read from the curve 

represents the ordinary honeycomb structure's properties. In 

the full-hierarchy state, all variables lose their effect on the 

result, and all curves merge on a specific value. This is due 

to the complete disappearance of the base part of the 

structure. In Figure 11(b), a decreasing trend is recognized 

in the effective Poisson ratio due to the decrease in 𝛼𝑡. For 

the effective Poisson ratio, the structure shows the same 

behavior with the other mechanical properties at the 

maximum and minimum values of the 𝛾1. Consequently, 

these three elastic mechanical properties reach maximum 

and minimum values, as desired, at approximately the same 

𝛾1 value. It is between 0.3-0.35. 

For the effective Young's modulus and the effective shear 

modulus curves, the position of the peak point in each 𝛼𝑡 

curve shifts to the right on the 𝛾1 axis as the 𝛼𝑡 value 

increases. After 𝛼𝑡= 0.7, the shifting accelerates. This 

situation is seen as a stable right shifting movement 

following the increase of 𝛼𝑡 value in the effective Poisson's 

ratio curve. Except for a few 𝛼𝑡 values (𝛼𝑡= 0.6-0.9), as the 

𝛾1 increases, the strength values of the structure at all 𝛼𝑡 

values decrease first and then start to increase again. The 

amount of the rigidity reduction is mostly at 𝛼𝑡= 0.1. When 

the structure transforms from non-hierarchy(𝛾1= 0)  to full-

hierarchy(𝛾1= 0.5), its stiffness decreases by 76.5%; this 

reduction rate is 70.4% for shear modulus and 41.4% for 

Poisson's ratio. Among the points that show the maximum 

and minimum values that 𝛾1 can take, the ideal situation 

differs for the three specified mechanical property terms. 

Therefore, it is necessary to work within a specific range in 

order to obtain the required mechanical properties. The range 

is between 𝛾1= 0.28, which is the maximum of Young's 

module, and 𝛾1= 0.33, which is the minimum of Poisson's 

ration. We call it as the ideal design range for the first-order 

circular hierarchical honeycomb. 
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(a) (b) (c) 

Figure 11. (a) Normalized effective Young’s modulus, (b) Normalized effective Poisson’s ratio, and (c) Normalized effective shear modulus of 

the circular hierarchical honeycomb as a function of the heterogeneity factor with respect to 𝛾1 

Figures 12 and 13 demonstrate the normalized effective 

elastic modulus and the normalized effective Poisson’s ratio 

for different heterogeneity levels. The results show that a 

relatively wide range of normalized elastic modulus and 

effective Poisson’s ratio can be obtained by tailoring the 

structural dimensions of the honeycombs or changing the 

hierarchy geometry. Furthermore, it can be seen that the first-

order hexagonal hierarchical honeycombs have an effective 

stiffness up to 2 times of the ordinary honeycomb [28]. It is 

possible to achieve an effective elastic modulus up to 2.1 

times that of the ordinary honeycomb using circles instead of 

hexagons as hierarchy geometry and by setting different 

thicknesses for the base and hierarchy parts of the body. 

 
Figure 12. Normalized effective Young’s modulus of the first-

order circular hierarchical honeycomb for different heterogeneity 

levels, and the first-order hexagonal hierarchical honeycomb with 

respect to 𝛾1 

Now that, maximum values of the bending moments in 

each cell wall, which influence the effective properties of the 

structure, occur at the corners of the honeycomb. The in-

plane elastic properties tend to increase as the amount of 

material located at the corners of the structure is more than 

that found in the middle parts of the cell walls. That’s why 

the hierarchy is a widespread phenomenon for cellular 

structure. This situation can be seen in Figures 12 and 13, 

where the findings we obtained in our study are shown. We 

see an increase in stiffness up to 𝛾1= 0.3. The reason is an 

increase in the amount of material located at the corners of 

the body, as mentioned above. The increase can be calculated 

numerically by (2𝜋𝑡𝑓𝑖𝑛𝑎𝑙 − 3𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙)𝑎𝛾1. 

On the other hand, the numerical value of the change in 

the amount of material located at the middle part of the 

structure is found with the equation 

3𝑎(𝑡𝑓𝑖𝑛𝑎𝑙 − 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 2⁄  − 𝑎𝛾1𝑡𝑓𝑖𝑛𝑎𝑙 , where 𝑡𝑓𝑖𝑛𝑎𝑙  is the wall 

thickness of the reference structure. As can be easily realized 

from the equations, with the increase of 𝛾1 value, the body's 

corner parts get sufficiently durable, and the middle part 

becomes weak. Considering the homogeneous thickness 

condition resulting from this situation, while the stiffness 

increases up to a specific 𝛾1 value, it starts to decrease after 

a pick point. In case of heterogeneity, it is seen that by 

keeping the 𝛾1 constant, 𝛼𝑡 increases the stiffness to a 

particular value and then decreases it. The behavior of the 

structure, as described, is explained similarly to the state in 

the homogeneous system. 

 
Figure 13. Normalized effective Poisson’s ratio of the first-order 

circular hierarchical honeycomb for different heterogeneity levels, 

and the first-order hexagonal hierarchical honeycomb with respect 

to 𝛾1 

Figures 12 and 13 demonstrate that; by choosing circular 

geometries as the hierarchy element, we can obtain a 

mechanically better structure from the reference body, which 

is the ordinary honeycomb. However, we get a worse design 

than the hierarchical structure with hexagon preferred by 

Ajdari as a hierarchy element. When we consider the 

hierarchy and base parts of the body separately in terms of 

wall thickness, which we call heterogeneity in our study, we 

could obtain a structure with a lower stiff and Poisson ratio 

from the hexagonal hierarchical structure concerning the 

mechanical properties. With heterogeneity, an improvement 

of 15.5% in Young's modulus and 30.3% in Poisson's has 

been achieved. Further maximization of features can be 
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possible by also varying hierarchy geometries. It would be 

useful if the hierarchy elements are in different thickness 

conditions to get maximum mechanical performance. This 

could be achievable by appropriate adjustment of the cell 

thickness in different parts of the structure. 
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