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Aircraft wings are a compromise that allows the aircraft to fly at a range of flight conditions. 

Wings of the morphing type are meaningful advancements of the conventional structures as 

they are benefit to maneuverability and economy of aircrafts. Aims to demonstrate features 

of morphing wings’ performance, this paper conducts a comprehensive Finite Element 

Analysis to a morphing wing after the object had been carefully designed. The deformation, 

strain energy, equivalent stress, and equivalent elastic strain of the morphing wing after 

applying a certain pressure are reached according to the constructed Finite Element model. 

Conclusion such as stress concentration point, maximum deformation, etc. of the morphing 

wing are suggested according to the analytic results. 

 

1. Introduction 

Air planes have played an important role in history since the 

first airplane was invented in 1903 [1, 2]. Developments in 

science and technology have led to more advanced air plane 

structures that offer high efficiency, lower cost, greater 

maneuver ability, the ability to cruise, and so forth [3, 4]. In 

recent years, the study of airplane wings has become a hot 

topic, with the particular interest in morphing wings [3-6]. 

Originally, morphing wings are inspired by birds, which 

have a large potential to improve the overall aircraft 

performances [7, 8]. Morphing aircraft are multi-role aircraft 

that change their external shape substantially to adapt to a 

changing mission environment during flight [8]. This creates 

superior system capabilities not possible without morphing 

shape changes. The objective of morphing activities is to 

develop high performance aircraft with wings designed to 

change shape and performance substantially during flight to 

create multiple-regime, aerodynamically-efficient, shape-

changing aircraft [8-10]. Compared to conventional aircraft, 

morphing aircraft become more competitive as more mission 

tasks or roles are added to their requirements. 

Morphing wing has been in aviation industry. Firstly, 

Wright brothers decided to use twist which is out of plane 

type of morphing wing, they used it to roll the aircraft and it 

worked [8, 11]. As years pass by many aeronautical 
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engineers started getting interested in morphing wing 

concept and started to experiment, the problem they were 

facing was with the material which can be used efficiently 

and at low cost [8, 12]. In 1951 the aircraft X-5 was flown 

with variable sweep wing which could change its shape 

depending on speed and it was quite efficient and later on 

aircrafts such F14 and F111 were also using same design 

geometry and this time the material was using Titanium 

which was very strong and light material, it is being used still 

in aviation industry [13, 14]. Designers faced the problem of 

weight which still continues to be the problem for morphing 

wing aircraft but they did not let this issue to stop them so 

many designers designed morphing wing technology and 

applied into smaller scale in aircraft which included chord 

changing, leading and trailing edge changing, flaps changing 

one of the examples were F16 and F18 which uses leading 

edge changing morphing technology which is quite 

beneficial [14]. Latest and very successful example of 

morphing wing technology is Morphing Flap system which 

was made by Flexsys company for the Gulf Learjet [15-17]. 

Designers are continuing to find appropriate design of 

morphing wing which will be efficient in fuel, would be 

having less weight and at the same time less cost price [8, 

17]. 

The current use of multiple aerodynamic devices (such as 

flaps and slats) represents a simplification of the general idea 

http://www.crpase.com/
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behind morphing. Traditional control systems (with fixed 

geometry and/or location) give high aerodynamic 

performance over a fixed range and for a limited set of flight 

conditions [17, 18]. Outside of this range, these traditional 

systems can be neutral or negatively influence the 

aerodynamics and hence often give lower efficiency [17, 19]. 

Conventional hinged mechanisms are effective in controlling 

the airflow, but they are not efficient, as the hinges and other 

junctions usually create discontinuities in the surface, 

resulting in unwanted fluid dynamic phenomena. Since 

1920, airplanes have used devices that can increase the lift 

during landing and takeoff [20]. Increases in aircraft weight, 

cruise speed, and increases in the wing structural stiffness to 

avoid multiple aero-elastic phenomena (divergence, flutter, 

etc.) have led to the use of discrete control surfaces such as 

ailerons and flaps in place of wing twist [8, 17]. Researchers, 

gradually, seriously revisited concepts of variable wing 

shape. Most of this research was based on two concepts, 

namely the active control of the curvature along the 

wingspan and the implementation of flexible wings, able to 

exploit the aero-elastic forces to obtain the desired 

deformations (wing shapes) [21. 22]. 

Civilian airplanes consume large amounts of fuel during 

a flight [23, 24]. The weight of fuel accounts for more than 

30% of the airplane’s total weight [17, 24]. A morphing wing 

with a variable camber trailing edge reduces fuel 

consumption by at least 5% and increases the lift coefficient 

from 0.08 to 0.4 [8, 17, 23, 24].  

Changing the wing shape or geometry is not new. 

Historically, morphing solutions always led to penalties in 

terms of cost, complexity, or weight, although in certain 

circumstances, these were overcome by system-level 

benefits [25]. The current trend for highly efficient and 

‘green’ aircraft makes such compromises less acceptable, 

calling for innovative morphing designs able to provide more 

benefits and fewer drawbacks [26]. Recent developments in 

‘smart’ materials may overcome the limitations and enhance 

the benefits from existing design solutions. The challenge is 

to design a structure that is capable of withstanding the 

prescribed loads, but is also able to change its shape. 

Under the condition that the performance of morphing 

wings of aircraft is limited, this paper presents a detailed 

feature analysis of a designed morphing wing by using Finite 

Element Analysis (FEA) to demonstrate the corresponding 

mechanical properties of the morphing wing. The reminder 

of this paper is arranged as follows. Section 2 presents some 

basic concepts associated with morphing wings. Section 3 

introduced the morphing wing model of this study. The FEA 

is implemented in Section 4. Conclusion of this study is 

provided in Section 5. 

2. Basic Concepts of Morphing Wing 

2.1. Wing Profile 

A typical wing profile is displayed in Figure 1. In 

aeronautics, the thickness ratio compares the maximum 

vertical thickness of a wing to its chord. It is a key measure 

of the performance of a wing planform when it is operating 

at transonic speeds. To be specific, in civil aircraft, it is 

possible to come across wing profiles with various thickness 

ratios between 8-9% and 18-20% depending on the duty 

speed of the plane. Typically, thickness ratio of wing profile 

can be divided into thin profile (thickness ratio less than 0.1), 

medium thickness profile (0.1-0.14), and thick profile (over 

0.14) [27].  

 
Figure 1. Typical wing profile geometry 

The maximum thickness point is usually between 30% 

and 60% of the vet. In some old profiles it is possible to see 

that this point is at 25% of the vet. In some exceptional 

profiles, the maximum thickness point can be found lower 

than 60% of the veterinarian. Wing profiles can be 

symmetrical or humped. Symmetrical profiles are not used 

in aircraft wings, rather, they are used on vertical and 

horizontal tail surfaces, in the connecting elements between 

the wings of biplane aircraft, in the bodywork of the elements 

that create parasitic resistance on the aircraft such as landing 

gear and so on. To be comparable, humpbacks between 0 and 

5% are found on the airplane wings. It is possible to see more 

humped profiles in turbines and compressors. 

Overall, 2 force components (Carriage and Drag) and 1 

moment component (Pitching) affect the wing profile. It is 

possible to achieve transport and drag by integrating the 

pressure distribution across the surface. Although it seems 

possible to find drag by integrating pressure and friction 

distributions across the surface, this is generally very 

difficult. Therefore, drag is obtained by measuring the loss 

of momentum. Although the performance of the wing profile 

determines the Transport and Drag forces and the Pitching 

moment, it is often concerned with these coefficients instead 

of these force and moment components. In general, the 

aerodynamic coefficients of the wing profile depend 

primarily on the geometric shape and angle of attack of the 

profile, and then on the Reynolds and Mach numbers. 

2.2. Angle of Attack 

In fluid dynamics, angle of attack is the angle between a 

reference line on a body (often the chord line of an airfoil) 

and the vector representing the relative motion between the 

body and the fluid through which it is moving [28]. Angle of 

attack is the angle between the body's reference line and the 

oncoming flow. This article focuses on the most common 

application, the angle of attack of a wing or airfoil moving 

through air. 

In aerodynamics, angle of attack specifies the angle 

between the chord line of the wing of a fixed-wing aircraft 

and the vector representing the relative motion between the 

aircraft and the atmosphere. Since a wing can have twist, a 

chord line of the whole wing may not be definable, so an 

alternate reference line is simply defined. Often, the chord 

line of the root of the wing is chosen as the reference line. 

Another choice is to use a horizontal line on the fuselage as 

the reference line (also as the longitudinal axis). 
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Low angle of attack results in sufficient buoyancy, while 

an over-high angle of attack causes turbulence and may even 

cause the blade to break in the air stream. Therefore, 

designers must ensure that the angle of attack is at optimal 

levels (15 degrees generally). 

The critical angle of attack is the angle of attack which 

produces the maximum lift coefficient. This is also called the 

"stall angle of attack". Below the critical angle of attack, as 

the angle of attack decreases, the lift coefficient decreases. 

Conversely, above the critical angle of attack, as the angle of 

attack increases, the air begins to flow less smoothly over the 

upper surface of the airfoil and begins to separate from the 

upper surface. On most airfoil shapes, as the angle of attack 

increases, the upper surface separation point of the flow 

moves from the trailing edge towards the leading edge. At 

the critical angle of attack, upper surface flow is more 

separated and the airfoil or wing is producing its maximum 

lift coefficient. As the angle of attack increases further, the 

upper surface flow becomes more fully separated and the lift 

coefficient reduces further. 

Above this critical angle of attack, the aircraft is said to 

be in a stall. A fixed- wing aircraft is stalled at or above the 

critical angle of attack rather than at or below a particular 

airspeed. The airspeed at which the aircraft stalls varies with 

the weight of the aircraft, the load factor, the center of gravity 

of the aircraft and other factors. However, the aircraft always 

stalls at the same critical angle of attack. The critical or 

stalling angle of attack is typically around 15-20 degrees for 

many airfoils. 

3. Morphing Wing Design 

The design of the morphing wing follows the 

predetermined steps [29-31]: 

(1) Model determination. The NASA sc(2)-0714 model 

was selected to be the an aircraft model of this study (two 

Dimensional (2D) coordinates of which is available at 

http://airfoiltools.com/), see Figure 2. 

(2) Extend 2D coordinates to 3D view. Transfer the 2D 

coordinates to Microsoft EXCEL and then add the z 

coordinates as zero to obtain the 3D view. 

(3) 3D model establishments. Save values in Step (2) text 

form to transfer SOLIDWORKS software and configure the 

3D model of the morphing wing.  

The morphing wing s divided into two different parts: 

fixed part (part 1) and morphing part (part 2).  

 
Figure 2. 2-D View of the wing 

4. Finite Element Analysis (FEA) 

To create buoyancy, the surface area of the upper part of 

the morphing wing is larger than the lower side. Due to this 

difference, a high-pressure area occurs in the lower section 

and a low-pressure area in the upper section. Thanks to this 

pressure difference, the buoyancy can be obtained from the 

air.  

To observe the mechanical reaction of the morphing wing 

against this pressure difference, we create a high-pressure 

area at the bottom of the morphing wing and apply it to the 

wing through the ANSYS program. The aim in doing this is 

to observe the stress, resistance, and deformation changes 

that may occur on the wing and to determine the critical 

points on the morphing wing model.  

The analytic steps using ANSYS for analysis of the 

morphing wing as follows [32-36]:  

(1) Save and then transfer the morphing wing model form 

SOLIDWORKS to ANSYS. 

(2) Parameter definition. Define geometry, material 

(Aluminum), etc. of the morphing wing in the finite element 

model in the ANSYS software. 

(3) Meshing: Mesh, elaborately, the finite element model 

in the ANSYS software. 

(4) Analysis implementation. Conduct analysis and 

monitor outcomes as deformation, stress, strain, and energy 

change. 

The deformation, strain energy, equivalent stress, and 

equivalent elastic strain of the morphing wing after applying 

1 MPa pressure is displayed in Figures 3-6, respectively. 

As seen from the Figure 3, after applying pressure, 

maximum deformation occurs at the end points of our wing. 

Since these parts are the most distant parts of our wing from 

the main body, as a result of the strength calculations, the 

most force occurs in the extreme regions. Therefore, 

deformation in the extreme regions is more. In contrast, as 

the surface area, the least amount of expansion occurs in the 

parts of the wing welded to the main body. The reason for 

this is that the momentum acting on those regions is less. 

Therefore, minimum deformation occurs in areas close to the 

body. 

 
Figure 3. Deformation of morphing wing after 1 MPa pressure 

applied 

 
Figure 4. Strain energy distribution of the morphing wing after 1 

MPa pressure applied 

The total shear energy changes occur mostly in the upper 

part of the morphing wing, closest to the body. The slip 

occurs perpendicular to the lateral axis. And it tends to 
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happen in fixed sections with the most reaction force. Since 

less energy is dissipated to the tip of the morphing wing, less 

compensating force is generated at the tip. And this results 

in less strain energy occur at the ends. 

 
Figure 5. Equivalent stress distribution of the morphing wing 

after 1 MPa pressure applied 

As shown in the Figure 5, the maximum equivalent stress 

occurs in the parts of the upper part of the wing closest to the 

main body. The pressure acting from below causes the wing 

to bend upwards. And this causes the wing to squeeze the 

upper parts and the lower parts to elongate. For this reason, 

the maximum equivalent stress occurs in these regions. Since 

the opposite is true at the ends, the minimum equivalent 

stresses are obtained at the ends as shown in the Figure 5. 

 
Figure 6. Equivalent elastic strain of the morphing wing after 1 

MPa pressure applied 

As shown in the Figure 6, the maximum equivalent 

elastic strain is seen in the center and near the part of the 

wing closest to the main body. Since the morphing wing is 

welded to the main body, the maximum elastic strain 

tendency is observed in the center and the periphery of the 

wing close to the body. However, since the ends of the 

morphing wing are far from the welded part, the amount of 

energy to be generated in those parts is minimum. Therefore, 

equivalent elastic slip occurs in the minimum amount in the 

end parts of the plane where it can be seen from the shape. 

As can be seen from all these analyzes, different regions 

of the wing gave various reactions to different types of 

analysis. And basically, it is concluded that the critical points 

are the tip of our wing and the part welded to the body. 

Because energy and deformation changes took place in these 

regions with maximum and minimum. These analyzes are 

very important. Because the evaluation and scoring of any 

product designed is done by looking at these analyzes. And 

if necessary, the design can be redone in some projects. As a 

result, these analyzes are very important results that shed 

light on us. 

 

 

 

5. Conclusions 

Wings of the morphing type are meaningful 

advancements of the conventional structures as they are 

benefit to maneuverability and economy of aircrafts. This 

paper conducts a comprehensive Finite Element Analysis to 

a morphing wing after the object had been carefully 

designed. The following conclusions are achieved based on 

the outcomes of the analysis: 

(1) Maximum deformation occurs at the end points of the 

morphing wing as these parts are the most distant parts from 

the main body. The expansion of the parts of the wing welded 

to the main body is minor.  

(2) The total shear energy changes occur mostly in the 

upper part of the morphing wing, closest to the body.  

(3) The maximum equivalent stress occurs in the parts of 

the upper part of the wing closest to the main body.  

(4) The maximum equivalent elastic strain is in the center 

of the wing and at the meanwhile the equivalent elastic slip 

occurs in the minimum amount in the end parts of the plane. 

As a direction for future work we will consider applying 

some techniques such as but not limited to [36-51]. 
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