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The use of renewable solar and wind resources as distributed generation sources in 

distribution networks has been welcomed by network operators. In order to exploit the 

maximum benefits of using these distributed products, the location of installation and their 

capacity should be determined optimally in the distribution network. In this paper, in order 

to optimize the placement of solar panels and wind turbines in the distribution network with 

the aim of reducing losses and improving reliability based on Energy Not Supplied 

subscribers (ENS), a multi-objective evolutionary algorithm based on fuzzy decision 

method, called the Multi-Objective Hybrid Training Learning Based Optimization-Grey 

Wolf Optimizer (MOHTLBOGWO) proposed that has a High optimization speed and not 

trapped at all in the optimal local. At first, the candidate buses are set for the installation of 

renewable resources using the Loss Sensitivity Factor (LSF). Then the proposed method is 

used to determine the location and optimal capacity of renewable resources through the 

candidate bases. Proposed issues have been implemented in a single-objective and multi-

objective manner on a 33 bus IEEE radial distribution network. Also, in this paper, the effect 

of distributing renewable resources on the characteristics of the distribution network is 

evaluated. The results obtained from the proposed algorithm are compared with the results 

of other algorithms to demonstrate the superiority of the proposed method in reducing losses, 

improving reliability, and increasing the financial profit of the network. Simulation results 

show the better performance of the proposed method in comparison with Teaching–

Learning Based Optimization (TLBO) and Grey Wolf Optimiser (GWO) methods and past 

studies to achieve optimal results. Also, the results show that distributing of the capacity and 

location of distributed renewable generation leads to a further reduction in losses and a better 

improvement of the reliability criterion. 

 

1. Introduction 

The growing consumption of electric energy, mainly 

produced by burning fossil fuels, leads to various issues, 

such as environmental and financial issues. On the other 

hand, nearly 15% of active power is produced in large power 

plants [1, 2]. This power is lost in transmission lines and 

distribution networks. Reducing power losses is one of the 
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most interesting and most important issues in power system 

studies. There are several ways to minimize losses in power 

systems at the level of transmission and distribution 

networks [3]. DG placement is one of these methods. These 

methods have advantages such as improving reliability, 

improving the voltage profile, and reducing the power loss 

of the active. However, inappropriate placement and 

inappropriate DG planning can weaken the distribution 

http://www.crpase.com/
https://doi.org/10.52547/crpase.7.2.2350
https://crossmark.crossref.org/dialog/?doi=10.52547/crpase.7.2.2356


KC and Alkhwaildi - CRPASE: Transactions of Industrial Engineering 7 (2) Article ID: 2356, 1–13, June 2021 

2

 

network characteristics [4, 5]. Several studies have been 

conducted in the field of exploitation of distribution 

networks by optimal utilizing the dispersed generation 

sources in the distribution network. Classical, analytical, and 

meta-exploratory methods are the methods that have been 

proposed in this field. Classical methods are methods that 

can determine optimal response over a short period of time, 

but with increasing problem dimensions they cannot 

determine the optimal response. Analysis methods are 

methods that require additional computations and may not be 

able to achieve absolute optimal points [6]. Recently; Meta-

heuristic methods have been used to solve the problems of 

distribution network utilization. In [7], the Teaching–

learning algorithm has been used and optimization has been 

achieved as a single-objective or two-objective. Placement 

of wind turbines and solar cells in the distribution network 

with the goal of reducing losses and improving the voltage 

stability conducted as a two-objective issue using the Particle 

Swarm Optimization algorithm [8, 9]. In [10, 11], in order to 

reduce the true power losses in distribution networks, the 

optimal placement of dispersed generation resources have 

been used in a combination and single-objective approach.  

In this study, a sensitivity analysis method was used to 

determine the best mode for locating dispersed generation 

sources and capacitors in the network. In [12], the optimal 

placement of renewable distributed generation sources is 

presented using evolutionary planning and its results are 

compared with the genetic method. The results show that, 

compared to the proposed method, the genetic algorithm 

finds the optimal problem at lower speeds. In [13], the 

locating of dispersed generation in distribution networks is 

provided by considering the voltage stability criteria.  In this 

study, the genetic algorithm is used to find the best answer. 

In [14, 15], a new and high-efficiency algorithm is proposed 

using a firefly algorithm to determine the location and 

capacity of dispersed generation sources in an unbalanced 

distribution network in a single-objective optimization. The 

goal of the problem is to reduce network losses. 

The use of Genetic Algorithm (GA) and Simulated 

Annealing algorithm for optimal allocation of DG in 

distribution network [16, 17] are presented in the form of 

single-objective optimization with the aim of reducing of 

losses. In [18, 19], the installation location of the DG is 

determined by the GA algorithm and its capacity is 

determined by the Particle Swarm Optimization (PSO). This 

work has been done on the basis of the weight coefficient 

method and is presented with the aim of reducing power 

losses, decreasing voltage oscillation of the bus and 

improving the voltage stability of the distribution network. 

In [20, 21], the Ant Colony Optimization (ACO) algorithm 

is proposed to determine the best installation location of the 

DG in the distribution network. This algorithm is presented 

in the form of single-objective optimization for reducing 

losses. Harmony Search algorithm (HS) is presented in [22] 

as an optimization method for solving this problem with the 

goal of reducing losses based on single-objective 

optimization. The Artificial Colony Bee (ABC) algorithm 

has been introduced in [23, 24] to determine the capacity, 

optimal power coefficient and DG installation location. This 

algorithm is presented in the form of single-objective 

optimization for reducing active losses. In [25], the 

Differential Evolution Algorithm (DEA) has been used to 

optimize single-objective DGs and achieve minimum losses. 

In [26], the Bacterial Foraging Optimization (BFO) Search 

Algorithm was used to optimize the planning of DG units in 

the distribution system with the goal of reducing losses, 

reducing operating costs, and improving voltage stability. 

This work is based on the weighting coefficient method and 

the multi-objective optimization form. The Imperialistic 

Competitive Algorithm (ICA) is used in [27] as a single-

objective optimization to minimize losses in the system. The 

Plant Growth Simulation Algorithm (PGSA) has been used 

in [28-30] to determine the unit capacity and the loss 

sensitivity factor in choosing optimal DG location. Firefly 

Algorithm (FA) is used in [21, 31] to optimize single-

objective DGs with the goal of reducing power losses. In [32, 

33], Ant Lion Optimizer (ALO) algorithm is used to 

determine optimal location of installation and DG size based 

on renewable resources with the goal of reducing losses and 

improving the profiles and voltage stability in a multi-

objective optimization based on weight coefficient method. 

In [34], the optimal placement of wind turbines in the 

distribution network is proposed using Cuckoo Search 

Algorithm (CSA) in a single-objective optimization with the 

goal of reducing power losses. In [35, 36], the locating of 

wind turbines and solar panels is proposed to reduce power 

losses and improve voltage stability using PSO algorithm 

based on multi-objective optimization and weight coefficient 

method. 

As mentioned in most of the previous studies, the 

problem of positioning is presented as single or two- 

objective optimization with the goal of reducing losses and 

improving the voltage profile, based on the weight 

coefficients method. In order to achieve a more accurate and 

realistic exploitation of the distribution network, the problem 

of the location of distributed generation should be considered 

as a multi-objective. One of the best ways for solving multi-

objective problems is the use of Pareto levels to determine 

the optimal answer, which in this paper focuses on it and 

presents a multi-objective hybrid algorithm. On the other 

hand, the placement of renewable resources from the 

perspective of reliability, and considering the network failure 

rate and energy not-supplied network, has been less 

investigated. In this paper, these concepts are considered. In 

this paper, the proposed method is based on the combination 

of Teaching–learning and gray wolfs algorithms The 

Teaching–learning algorithm was presented in 2012 [37] and 

the high convergence rate and the lack of control parameters 

were the features of this method. The gray wolf method is 

presented in 2014 [38] and has been greatly welcomed to 

solve the power engineering optimization problems. This 

method has features such as high convergence speed, high 

computational power, fast and large searches and Avoid 

Local Optimal. Therefore, in this paper, in order to locating 

solar panels and wind turbines in a 33-buses radial standard 

distribution network and reducing losses and improving 

reliability, Utilizing the benefits of both methods, a multi-

objective hybrid algorithm based on a fuzzy decision method 

called MOTLBOGWO is proposed. The main contribution 

of this article are following: 

• Use of a new cumulative smart method called the 

HTLBOGWO method 
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• Solve multi-objective problem of locating 

renewable resources based on fuzzy decision 

method in MOHTLBOGWO algorithm 

• Study of the location of renewable energy sources 

from the perspective of reliability 

• Assess the dispersal of location and capacity of 

renewable energy sources over network 

characteristics 

The rest of this paper is organized as follows: 

In Section 2, Loss Sensitivity Factor Formulation is 

described for determining the candidate buses for the 

installation of renewable energy sources. In Section 3, the 

problem formulation including optimization target function 

and problem constraints is presented. In Section 4, the 

proposed algorithm, the fuzzy decision method and 

implementation of the proposed method in problem solving 

described. In Section 5, the simulation results are presented 

and the conclusions are presented in Section 6. 

2. Loss Sensitivity Factor 

In this study, the Loss-Sensitivity Factor (LSF) is 

presented to show buses that are sensitive to losses [39, 40]. 

Also, using this factor can reduce the search area and the time 

of the optimization process. In other words, the buses that are 

in trouble for losses are identified by this factor, and thus 

instead of searching all the network buses for the installation 

of dispersed generation by the optimization method, the 

search area is limited to these buses, thereby the time of the 

calculations is reduced. For a transmission line 'L' connected 

between the buses "i" and "k", as shown in Figure 1, the 

active power losses on this line are defined by RI2, defined 

as Eq. (1) [32, 39]. 

 
Figure 1. Distribution Network Equivalent Circuit [32] 
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The LSF can be calculated as follows [41]: 
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The normalized voltage is obtained by dividing the 

voltage in the base conditions by 0.95 [32, 39]. Buses whose 

their voltages are less than 1.01 can be considered as the 

candidate bass for DG installation. It's worth noting that 

LSFs introduce a sequence of buses for the installation of 

DG. 

3. Problem Formulation 

In this study, multi-objective optimization of location and 

capacity of solar panels and wind turbines in the distribution 

network using the MOHTLBOGWO hybrid algorithm is 

proposed to reduce losses and improve reliability. In order to 

achieve Pareto set levels, Problem optimization variables, 

the optimal location and capacity of dispersed wind and solar 

generation sources are determined using intelligent single-

objective optimization (using the HTLBOGWO method) as 

well as multi-objective based on decision-making fuzzy-

based approach.  

3.1. Objective Function 

In this study, the minimization of power losses and 

improvement of Reliability is considered as an objective 

function and is described below. 

• Line loss 

Total network losses are equal to the losses of all network 

lines. To calculate network losses, you must first get the 

current of lines. To calculate the current of lines, it is also 

necessary to solve the load distribution problem and obtain 

the voltage of the buses [42]. By calculating the buses 

voltages, the line currents and network losses are calculated 

as follows: 

                                                                   (3) 

                                                                (4) 

where k is between the buses i and j. Rk and Xk are the 

resistance and reactance of the k-th line, and Nb is the 

number of grid lines. 

• Reliability 

Reliability indicators are distribution system reliability 

assessment factors that were first introduced by the IEEE in 

1998 to evaluate the distribution system. Basic reliability 

indicators are three load point indicators, a) The average rate 

of breakdown, b) the average withdrawal, and (c) the annual 

withdrawal period. A radial distribution system includes a set 

of series equipment including lines, brackets, fuses, and 

disconnected switches, and so on. A subsystem connected to 

the load point of a system requires that all equipment 

between it and the supply point be in operation. Therefore, 

the principle of serial systems can be considered directly for 

these systems as follows. 
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In the above equation, n is represent the number of outage 

events affecting load point p, 
i  denotes Equipment failure 

rate I (failure/year) and ri is repair time equip I (hours). 

Based on the basic indices of the load point and energy 

consumption at load points, energy not-supplied (ENS) 

(kWh/year) is calculated as follows [43]. 

( )

1

nl

a j j

j

ENS L u
=

=                                                           (8) 

where, nl represents the total number of load points, the 

unavailability of the load point j (hours/year), and the 

average load connected at the load point j (kW). 

3.2. Constraints 

In solving this optimization problem, a series of equal 

and unequal constraints is considered, which is expressed in 

sequence. 

• Equilibrium power equations 

The sum of the algebraic input and output power in the 

distribution system should be equal to: 

DG

DG

N L N

Swing DG Lineloss

i 1 i 1 q 1

N L N

Swing DG Lineloss

i 1 i 1 q 1

P P (i) P (i) Pd(q)

Q Q (i) Q (i) Qd(q)

= = =

= = =

+ = +

+ = +

  

  

                             (9) 

• Voltage constraint 

The value of the voltage in each bus should be between a 

minimum and a maximum value as follows: 

min i maxV V V                                                   (10) 

In the above relation, Vmin and Vmax are considered to 

be 0.95 and 1.05 p.u respectively [32]. 

• Constraints on the production of DG 

To prevent reverse power flow, the installed DG capacity 

in the network is limited as follows, which should not exceed 

the power supplied by the post [32]. 

DGN L N

DG Lineloss

i 1 i 1 q 1

3
P (i) P (i) Pd(q)

4= = =

 
  + 

 
                             (11) 

DGN L N

DG Lineloss

i 1 i 1 q 1

3
Q (i) Q (i) Qd(q)

4= = =

 
  + 

 
                           (12) 

On the other hand, DGs themselves have the minimum 

and the maximum production capacity is as follows [43]. 

min max

DG DG DGP P (i) P                                                (13) 

min max

DG DG DGQ Q (i) Q                                               (14) 

• Line capacity constraints 

The Complex power transmission of each line should be 

less than the nominal value given in the following equation. 

Li Li(rated)S S                                                        (15) 

4. Overview of Proposed Algorithm 

4.1. TLBO 

The TLBO algorithm is a smart optimization method that 

was introduced by Rao [15] based on the influence of teacher 

to students to increase scientific level of class. This method 

is based on this principle that the teacher tries to close class 

level to himself and students, in addition to exploit the 

teacher's knowledge with regard to other classmates, use 

their knowledge to increase level of them. Because of the 

teacher can't bring level of individual students to himself, so 

tries to increase the average level of whole class and 

evaluates the class level based on the exams and students’ 

scores. The mathematical expression of this approach is that 

first the population of problem variables (teacher and 

students) are defined randomly. All of these populations are 

compared together by the objective function and set of 

variables with best solution are considered as the teacher. 

This approach is divided into two phases: teacher phase and 

student phase. 

• Teacher phase 

In this step teacher tries to bring class average to himself. 

But since it is very difficult, teacher tries to increase class 

average from Mi to M_new. Each set of problem variables 

are updated based on the difference of these two values. 

Difference of these two values can be saved by the parameter 

Diff_Mean as follows: 

_ ( _ )i i f iDiff Mean r M new T M= −                              (16) 

Where Tf  is the teacher parameter that is selected 

randomly between 1 and 2. The ri is a random number 

between 0 and 1. Using the follow equation each set of 

variables are updated. 

, , _new i old i iX X Diff Mean= +                                       (17) 

• Student phase 

Students in addition to teacher’s knowledge, benefit from 

each other’s knowledge. The mathematical expression of this 

approach is that in each step and in each repetition each set 

of variable (student) selects one of students randomly. For 

example student i selects student j and this i is opposite of j. 

If the student j has more knowledge respects to student i then 

the student i updates his status based on the following 

equation: 

, , ( )new i old i i i jX X r X X= + −                                      (18) 

The student status is varied as follows: 
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, , ( )new i old i i j iX X r X X= + −                                     (19) 

After the all students changed their status, their level is 

evaluated by the objective function. Under these conditions 

the best student is compared with the teacher of previous step 

and if a better result has, is replaced with previous iteration 

teacher. This process is continued to obtain convergence 

conditions. 

4.2. GWO 

One of the population-based intelligent and evolutionary 

algorithms is the Gray Wolf algorithm (GWO) which was 

first announced by Mir-Jalili in 2014 [38]. In this algorithm, 

the performance and behaviour of gray wolfs for hunting is 

simulated. Figure 2 shows that parameters such as α, β, δ, 

and ω represent the leaders of the group so that α directs the 

group as leader of the group and has important decisions 

about hunting, resting place and so on. The second group of 

leadership belongs to β. In addition to being able to help α 

due to having a good decision, β members are also the best 

substitutes for the α wolfs when they are old or dead; ω but 

is at the bottom of this group. They are the last wolves that 

are allowed to eat. The other group members that are not α, 

β and ω are called δ [38]. 

 
Figure 2. Leader hierarchy in gray wolves group 

The principles of GWO function are as follows: 

• Investigating, pursuing and following the hunt; 

• Pursuing, sieging and harassing the hunt until it 

stops; and 

• Attacking to the hunt.                                                                                                                

In the simulation of the GWO, α is considered as a top 

answer. After that, the next two responses after α are 

considered β and δ. Finally, the rest answers are regarded ω. 

To model a suitable situation that gray wolves encircle their 

hunt during hunting are shown as follows [38]. 

                                                         (20) 

                                                     (21) 

where t represents the repetition, A ,C , and PX  indicate the 

coefficients vectors, the position of the bait and the gray wolf 

respectively. The coefficients vector is obtained from the 

following equation [38]. 

12A ar a= −                                                          (22) 

22C r=                                                                (23) 

where vectors of random numbers at a distance are shown by   

and   that are selected from [0, 1] area and vector a  decreases 

from 2 to 0 during repetitions.                                                                                                    

According to the wolf ability due to finding and 

surrounding the hunt and in order to having a mathematical 

simulation of this kind of behaviour, it is assumed that the 

three top wolves in the group have more knowledge about 

the hunting place. By storing the position of the three above 

mentioned wolves, ω wolves have to change their location 

based on the position of the three top members of the group 

which can be expressed as follows [38]: 

1 2 3, ,D C X X D C X X D C X X     = − = − = −        (24) 

1 2 31 2 3, ,X X a D X X a D X X a D     = − = − = −       (25) 

1 2 3
( 1)

3

X X X
X t

+ +
+ =                                              (26) 

4.3. HTLBOGWO (TLRBO) 

The TLBO algorithm is a robust algorithm capable of 

solving engineering problems. However, a new phase has 

been added to this algorithm to increase the global and local 

search capability as well as track the optimal answer. This 

phase is due to the choice of first, second and third students 

as the best answers after the student phase. After selecting 

the top three students, the remaining students will learn from 

these three students. The process of selection students and 

their ranking is considered to be the ranking phase, which is 

called the TLRBO algorithm. 

Since the ranking phase and follow up of the students and 

their learning from the top three students are very similar to 

the behaviour of the gray wolf algorithm, So in the 

formulation of TLRBO, method of selection the wolf-alpha, 

beta, and delta and the method of updating the location of the 

wolfs of Omega to follow up the top three wolves have been 

used. Therefore, the proposed algorithm will be a 

combination of the TLBO and GWO algorithms. 

4.4. HTLBOGWO (TLRBO) Multi-Objective Algorithm 

Multi-objective issues have multiple goals, which are 

mostly contradictory. The answer to these problems is a set 

of solutions called Pareto optimal solutions [44]. This set 

includes Pareto optimal solutions that represent the best 

balance between the objectives. Multi-objective 

optimization is considered as a minimization problem and 

formulated as follows [43]: 

 1 2 0min :  F(x)= ( x), ( x),..., ( x),imize f f f                    (27) 

 to: g (x) 0,  i 1,2,...,isubject m =                               (28) 

 h (x) 0,  i 1,2,...,i p= =                                             (29) 

i i iL x U                                                             (30) 

where 0 represents the number of targets, m denotes the 

number of inequality constraints and p is the number of 
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equality constraints. [Li, Ui] are the boundaries variable i. 

Given the nature of the multi-objective problems, various 

solutions cannot be compared through mathematical 

relations operators. In this case, Pareto optimal parental 

concepts allow us to compare two solutions in a multi-

objective search space [43]. 

Two key points in finding a suitable set of optimal Pareto 

solutions for the given problem are convergence and 

coverage. Convergence refers to the ability of a multi-

objective algorithm to determine the exact approximation of 

Pareto's optimal solution. The coverage reflects the 

distribution of Pareto's optimal response along the 

objectives. Since many of the current multi-objective 

algorithms are deductive, coverage and the number of 

answers for decision-making after the optimization process 

are very important. The ultimate goal for a multi-objective 

optimizer is to find the exact approximation of the optimal 

Pareto correct solution (convergence) with uniform 

distribution (coverage) for all purposes. 

To solve multi-objective problems using the 

MOHTLBOGWO algorithm, it first equipped to an archive 

to store and restores the best approximation of the optimal 

Pareto solution. The position updating of the search factors 

for MOHTLBOGWO is the same, but the student's position 

is selected from the archive. In order to find a suitable 

expansion for the Pareto optimal frontier, a place from the 

low-density Pareto optimal frontier, similarly for multi-

objective particle swarm optimization algorithm (MOPSO) 

[45] is selected. To find the low-density area of Pareto 

optimal frontier, the search space should be divided. This is 

accomplished by finding the best and worst objectives of 

Pareto's optimal solution, the definition of the hyper-sphere 

to cover all the solution, and the division of the hyper-sphere 

into sub-hyper-sphere in each repetition. After the creation 

of the section, the choice is made by a roulette wheel 

mechanism with the following probability for each section 

proposed by Coello Coello [2]. 

i

i

c
P

N
=                                                                (31) 

where c is a constant number greater than one, and Ni is the 

number of obtained Pareto's optimal response in the i-th 

section. This allows MOHTLBOGWO algorithm equations 

with higher probability to choose positions from low 

population sections. 

4.5. Fuzzy Decision Making 

The ultimate goal of a multi-objective optimization 

algorithm is to identify solving in the Pareto optimal set. 

However, identifying the entire Pareto optimal set is not 

possible due to its wide dimensions to prove the optimality, 

and therefore not recommended. Therefore, to investigate the 

feasibility of having Pareto optimal sets in multiple 

optimization problems, there is a practical approach. In the 

present study, a fuzzy approach is applied to select the best 

solution of the Pareto set. The j-objective function of a 

solution in Pareto set fj is defined by a membership function 

j as follows [46]: 

max

max

max

1                         

 
       

0              

  

 
  

          

 

  

min

j j

j j min

j jmin

j j

j

j

j

f f

f f
f f

f f

f f



 
 
 

=  
 
 




 

−

−

                             (32) 

where min

jf  and max

jf  are the minimum and maximum 

values of the objective function j. For each i solution, the 

membership function is calculated as follows [19]: 

1

1 1

n i

jj

j m n i

ji j






=

= =

=


 
                                                 (33) 

where n is the number of objective functions and m is the 

number of solutions. The answers have the maximum value 

of μi for the best compromise answer. 

4.6. Implementation of MOHTLBOGWO 

The steps to implement the proposed method in problem 

solving are as follows: 

• Step 1: Random generation of the initial population 

from the set of variables including the location of 

the installation and the capacity of solar and wind 

units as well as the power factor of wind turbines. 

• Step 2: the value of the target function is calculated 

for each set of variables and the best set is selected 

in terms of the value of the objective function as the 

representative of the entire population. 

• Step 3: Each set of variables is updated by the 

proposed algorithm, and if the new variables have 

better results, they will be replaced with the 

previous set. 

• Step 4: if the condition for convergence does not 

exist, go to step 1. Otherwise, go to step 5. 

• Step 5: Stop the algorithm. 

5. Simulation Results and Discussion 

5.1. Testing System 

As shown in Figure 3, in this paper, the proposed method 

is implemented on the IEEE standard 33-buses radial 

network. In the 33-buses network, the total consumption of 

this network is 3720 kW and 2300 kVAR. The 33-buses 

Network has 37 branches. System information is presented 

in [47]. 

 
Figure 3. IEEE Standard Radial 33-buses Distribution Network 
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5.2. Simulation Strategies 

In this paper, the optimal placement of solar panels and 

wind turbines for the purpose of reducing losses and 

improving reliability indicators are presented using the 

proposed method HTLBOGWO. First, simulations were 

performed in a single-objective optimization. Then, multi-

objective optimization was proposed based on fuzzy decision 

method and the results were compared and analyzed. In 

single-objective optimization, simulation results obtained 

from TLBO, GWO, and HTLBOGWO methods are 

evaluated based on indicators of loss reduction and energy 

not-supplied subscriber reduction (reliability improvement). 

In multi-objective optimization, the results of multi-

objective methods MOGWO, MOTLBO and 

MOTLBOGWO are presented. In Figure 4, the LSF curve of 

the 33-buses network is presented. In this figure, the buses 6, 

28, 29, 30, 9, 10, 13, 8, 27, 31 and 26 are based on the LSF 

curve considered  as the candidate buses for installing wind 

turbines and solar panels Which are similar to Candida buses 

in reference [32]. 

 
Figure 4. LSF curve of the 33-buses network 

 
5.3. Single-Objective Optimization Results 

In this section, the results of single-objective positioning 

of solar panels and wind turbines are presented for the 

purpose of reducing losses and reducing ENS for 1, 2 and 3 

DGs 1 megawatts.  In Table 1, the results are presented with 

the objective of reducing losses. In the positioning of 3 solar 

panels, the buses 13, 24 and 30 were selected for installation 

with a capacity of 996, 938 and 852 kW respectively. The 

network losses before positioning were 202.68 kilowatts. 

After locating one, two, and three panels, this value has 

dropped to 127.28, 86.55 and 72.11 kW, respectively. In 

locating of 3 wind turbines, the buses 30, 13 and 24 were 

selected for installation with a capacity of 997, 1000 and 789 

kW and with power factors 0.8659, 0.8122 and 0.8726 

respectively. With locating 1, 2 and 3 wind turbines, the 

network losses dropped from 202.68 to 81.43, 32.17 and 

13.68 kilowatts, respectively. With 1, 2 and 3 wind turbines, 

the network losses dropped from 202.68 to 81.43, 32.17 and 

13.68 kilowatts, respectively. 

Also, the minimum voltage is also improved by the use 

of panels and turbines. The results also show that the ENS 

value before the locating of solar panels and wind turbines 

was 6.695 MW, and after locating 3 panels it reached 0.628 

MW, and after locating 3 turbines reached 0.671 MWh. The 

results show that the cost of network losses with the optimal 

locating of solar panels and wind turbines has decreased and 

financial benefits from loss reduction have increased. In 

addition, the results have shown that increasing the number 

of DGs has led to a further reduction in losses, reduction cost 

of losses, and ENS, as well as further increase in the 

minimum voltage and net profit of the network. The results 

show that the performance of wind turbines was better than 

solar panels in improving the distribution network 

characteristics. In other words, in terms of reduction of losses 

and ENS, as well as the improvement of minimum voltage, 

it achieves better results due to the injection of reactive 

power in addition to the active power to the distribution 

network.

 

Table 1. Optimal sizing DG’s for 33 bus IEEE system (active power loss objective function) 

 

 

 

 

 

 Maximum Size 3MW (kW/pf/@Bus) 

 No PV 1PV 2PV 3PV 

Power Losses (kW) 210.98 127.28 86.55 72.11 

ENS (MWh/yr) 6.695 4.158 1.923 0.628 

Minimum Voltage (pu) 0.91308 0.9285 0.9629 0.9667 

Size and Location -- 1000/1@30 

893/1@ 10, 

1000/1@ 30 

996/1@ 13, 

938/1@ 24, 

852/1@ 30 

Total Size (kW) -- 1000 1893  

Losses Cost ($/yr) 110891 66899.8 45491.3 37903.5 

Net Saving ($/yr) -- 43991.2 65399.7 72987.5 

 No WT 1WT 2WT 3WT 

Power Losses (kW) 210.98 81.43 32.17 13.68 

ENS (MWh/yr) 6.695 4.158 2.233 0.640 

Minimum Voltage (pu) 0.91308 0.9360 0.9796 0.9892 

Size and Location -- 1000/0.8011@30 

861/ 0.8742 @10, 

1000/0.8091@30 

997/0.8659 @30, 

1000/0.8122 @13, 

789/ 0.8726@24 

Total Size (kW) --    

Losses Cost ($/yr) 110891 42801 16913.5 7191.6 

Net Saving ($/yr) -- 68090 93977.5 103699.4 
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The convergence curve of the combined HTLBOGWO 

combination method, along with TLBO and GWO methods 

for single-objective optimization of solar panels and wind 

turbines with the goal of reducing losses for 3 DGs, is shown 

in Figure 5 and Figure 6, respectively. As can be seen, in 

locating solar panels and wind turbines, the HTLBOGWO 

method has less convergence fluctuations, and achieved a 

lower loss rate than the TLBO and GWO with a higher 

convergence rate and less repetition. 

Single-objective optimization results with the goal of 

reducing losses using TLBO, GWO and HTLBOGWO 

methods for 3DG are presented in Table 2. As can be seen, 

the proposed method is better than other methods in terms of 

reducing losses, reducing cost of losses, reducing ENS, 

improving the minimum voltage and increasing the financial 

profit of the network. 

Table 3 presents the results of single-objective 

positioning of solar panels and wind turbines with the goal 

of reducing ENS for 1, 2 and 3 DG 1 megawatts. As can be 

seen, with the locating of 1 and 2 solar panels, the network 

losses are decreasing, but in the positioning of the three 

panels, the losses compared to the positioning of the two 

turbines increased from 87.17 to 97.04 kilowatt, but in 

contrast to the positioning of the three panels, the ENS value 

was strongly Dropped to 0.0025 MWh. In the positioning of 

wind turbines, with increasing its number, the amount of 

losses decreased, the minimum network voltage increased 

and the amount of ENS decreased, so that it reached 0.002 

MW in the positioning of 3 turbines. Also, with the optimal 

locating of turbines, the cost of losses is reduced and the 

amount of financial gain in the locating of the three turbines 

has a maximum value. This table also shows that wind 

turbines have a better effect on the characteristics of the 

distribution network than solar panels. 

 
Figure 5. Convergence curve of different methods with the aim of 

reducing the losses in the 3 PV positioning 

Single-objective optimization results with the aim of 

reducing the ENS obtained from the HTLBOGWO method 

are presented in Table 4 and compared with the TLBO and 

GWO methods. The amount of losses by the proposed 

method was 97.04 kilowatts and the losses obtained from the 

TLBO and GWO methods were 101.25 and 103.17 kW 

respectively. Also, the amount of ENS by the proposed 

method, 0.025 MWh and by TLBO and GWO methods were 

0.048 and 0.044 MW, respectively, which indicates the 

superiority of the proposed method in solving the problem of 

positioning solar panels. Also, according to  

Table 4, in the locating of solar panels and wind turbines, 

the HTLBOGWO method performed better than other 

methods in terms of reducing losses, reducing ENS, 

improving the minimum voltage and financial profit of the 

network. 

 
Figure 6. Convergence curve of different methods with the aim of 

reducing losses in the 3 WT positioning 

5.3. Assessment of the Renewable Resource Dispersion 

Effect 

In this section, the effect of dispersing the capacity of 

solar panels and wind turbines has been evaluated in problem 

solving. In other words, the effect of using a 3 MW DG with 

the use of three DGs with a capacity of 1 MW on the power 

loss, reliability index, minimum network voltage, cost of 

losses and financial profit of the network has been evaluated. 

The results obtained in Table 5 and Table 6 are presented for 

the purpose of decreasing losses and decreasing the ENS in 

a single-objective optimization, respectively. As can be seen, 

when using three DGs with a capacity of 1 MW instead of 

using a 3 MW DG The amount of network losses and ENS 

will be lower and the network obtaining the higher minimum 

voltage , more financial gain and reduce cost of losses. For 

example, according to Table 5, in dispersal conditions, the 

network losses decreased from 103.96 to 72.11 kV and ENS 

values decreased from 4.379 to 0.628 megawatts / h. 

According to Table 6, under dispersal conditions, the amount 

of network losses decreased from 161.26 to 97.04 kilowatts 

and ENS values from decreased 0.11 to 0.025 MWh. The 

voltage profile curve of 33-buses network before locating 

and under dispersion conditions for solar panels and wind 

turbines is plotted in Figure 7. Also Figure 7 shows the 

voltage profile curve of 33-buses network before locating 

and under conditions where there is no dispersion condition. 

Figure 7 and Figure 8 showed that the distribution and 

distribution of power in the network buses leads to 

improvement of the network voltage profile. 
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Table 2. Optimal sizing DG’s for 33-bus IEEE system (active power loss objective function-algorithms comparison) 

 Maximum Size 3MW (kW/pf/@Bus) 

 No PV TLBO GWO HTLBOGWO 

Power Losses (kW) 210.98 74.10 73.29 72.11 

ENS (MWh/yr) 6.695 0.734 0.659 0.628 

Minimum Voltage (pu) 0.9130 0.9621 0.9648 0.9667 

Size and Location -- 

872 (29), 858 (13), 946 

(24) 

889 (24), 903 (30), 994 

(10) 

996/1@ 13, 938/1@ 24, 

852/1@ 30 

Total Size (kW) --    

Losses Cost ($/yr) 110891 38949.0 38525.7 37903.5 

Net Saving ($/yr) -- 71942 72365.3 72987.5 

 No WT TLBO GWO HTLBOGWO 

Power Losses (kW) 210.98 14.02 13.82 13.68 

ENS (kWh/yr) 6.695 0.787 0.657 0.640 

Minimum Voltage (pu) 0.9130 0.9892 0.9891 0.9892 

Size and Location -- 

972 (24) 0.8636, 1000 (30) 

0.8011, 760 (13) 0.8299 

962 (24) 0.8659, 804 (13) 

0.8122, 1000 (30) 0.8726 

997/0.8659 @30, 

1000/0.8122 @13, 789/ 

0.8726@24 

Total Size (kW) --  -- -- 

Losses Cost ($/yr) 110891 7370.5 7267.1 7191.6 

Net Saving ($/yr) -- 103520.5 103623.9 103699.4 

 

Table 3. Optimal sizing DG’s for 33 bus IEEE system (ENS objective function) 

 Maximum Size 3MW (kW/pf/@Bus) 

 No PV 1PV  2PV  3PV  

Power Losses (kW) 210.98 129.47 87.17 97.04 

ENS (kWh/yr) 6.695 3.502 0.965 0.035 

Minimum Voltage (pu) 0.9130 0.9319 0.9655 0.9705 

Size and Location -- 
1000/1@13 1000/1@30, 1000/1@ 13 709/1@30, 810/1@10, 

957/1@13 

Total Size (kW) -- 1000   

Losses Cost ($/yr) 110891 68053.5 45819.5 51008.3 

Net Saving ($/yr) -- 42837.5 65071.5 59882.7 

 No WT 1WT  2WT  3WT  

Power Losses (kW) 210.98 103.21 62.16 55.43 

ENS (kWh/yr) 6.695 3.412 0.9630 0.011 

Minimum Voltage (pu) 0.9130 0.9385 0.9576 0.98248 

Size and Location -- 
1000 (10) 0.8237 1000 (30) 0.9480,  

1000 (10) 0.9981 

993 (13) 0.8579, 802 (29) 

0.8427, 762 (30) 0.8209 

Total Size (kW) --    

Losses Cost ($/yr) 110891 54251.4 32671.6 29136.6 

Net Saving ($/yr) -- 56639.6 78219.4 81754.4 

 

Table 4. Optimal sizing DG’s for 33 bus IEEE system (ENS objective function-Algorithms comparison) 

 Maximum Size 3MW (kW/pf/@Bus) 

 No PV TLBO  GWO  HTLBOGWO  

Power Losses (kW) 210.98 101.25 103.17 97.04 

ENS (kWh/yr) 6.695 0.048 0.044 0.035 

Minimum Voltage (pu) 0.9130 0.9694 0.9677 0.9705 

Size and Location -- 

986 (9),  

789 (29),  

1000 (13) 

807 (29),  

830 (13),  

1000 (10) 

709 (30),  

810 (10),  

957 (13) 

Total Size (kW) --    

Losses Cost ($/yr) 110891 53217.5 54228.8 51008.3 

Net Saving ($/yr) -- 57673.5 56662.2 59882.7 

 No WT TLBO  GWO  HTLBOGWO  

Power Losses (kW) 210.98 58.17 59.61 55.43 

ENS (kWh/yr) 6.695 0.018 0.016 0.011 

Minimum Voltage (pu) 0.9130   0.9808   0.9800   0.98248 

Size and Location -- 

893  

(9) 0.8760, 762 

(30) 0.982, 

1000 

(13) 0.9519 

652  

(29) 0.9660, 978  

(13) 0.9465, 920  

(30) 0.9824 

993 

(13) 0.8579, 802  

(29) 0.8427, 762  

(30) 0.8209 

Total Size (kW) --    

Losses Cost ($/yr) 110891 30577.0 31334.6 29136.6 

Net Saving ($/yr) -- 80314 79556.4 81754.4 
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Table 5. Results of DGs distribufication (SOO-Loss minimization) 

 Maximum Size 3MW (kW/pf/@Bus) 

PV 
1DG (3000) 

(kVA/P.F) 

1DG (3000) 

(kVA/P.F) ALO [32] 

1DG (3000) 

(kVA/P.F) [47] 

3DG (1000) 

(kVA/P.F) 

Power Losses (kW) 101.96 103.053 118.96 72.11 

ENS (kWh/yr) 4.379 -- -- 0.628 

Minimum Voltage (pu) 0.9510 0.9503 0.9441 0.9667 

Size and Location 

2585/1@29 2450/1@6 1857.5/1@8 996/1@ 13, 

938/1@ 24, 

852/1@ 30 

Total Size (kW)     

Losses Cost ($/yr) 53590.1 54164.6 62525.3 37903.5 

Net Saving ($/yr) 57300.9 56726.4 44002.6 68624.7 

WT 
1DG (3000) 

(kVA/P.F) 

1DG (3000) 

(kVA/P.F) ALO [32] 

1DG (3000) 

(kVA/P.F) [47] 

3DG (1000) 

(kVA/P.F) 

Power Losses (kW) 61.36 71.75 82.78 13.68 

ENS (kWh/yr) 4.406 -- -- 0.671 

Minimum Voltage (pu) 0.9667 0.9528 0.9549 0.9892 

Size and Location 

2544(6)0.8236 2238.8 (18) 0.87 2265.2 (8) 0.82 997/0.8659 @30, 

1000/0.8122 

@13,  

789/ 0.8726 @24 

Total Size (kW)     

Losses Cost ($/yr) 32253.1 37711.8 43509.1 7191.6 

Net Saving ($/yr) 78637.9 73179.3 63018.8 99336.6 

 

 

Figure 7. Network voltage profile of 33 buses before placing solar 

panels and under dispersion conditions 

 

Figure 8. Network voltage profile of 33 buses before placing wind 

turbines and under dispersion conditions 

5.4. Multi-Objective Optimization Results 

In this section, multi-objective optimization of the 

locating of solar panels and wind turbines is presented based 

on the fuzzy decision approach using the HTLBOGWO 

method and the results are compared with the TLBO and 

GWO multi-objective methods.  The Pareto optimal set of 

solutions for placement of 1 panel and 1 wind turbine with a 

capacity of 1 MW is shown in Figure 9 and Figure 10, 

respectively. As shown in Figure 9, the MOHTLBOGWO 

method, in comparison with the MOTLBO and MOGWO 

response scattering, offers better results in terms of achieving 

an optimal response.  Also, in the terms of achieving to lower 

losses, lower ENS, minimum voltage, lower cost of losses 

and higher financial profit, the proposed method 

performance was better than the other two methods. Also, 

according to Table 7 and Table 8, in the multi-objective 

optimization, items such as the losses, ENS, the minimum 

voltage, the cost of losses, and the amount of financial gain 

are located between the single-objective values that aimed at 

reducing losses and reducing ENS. In other words, in the 

multi-objective optimization, there is a Compromise 

between the losses and ENS. 

 
Figure 9. Pareto optimal answers set curve in the placement of the 

solar panels by various methods 
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Figure 10. Pareto optimal answers set curve in the placement of 

the wind turbines by various methods 

In Figure 11, the multi-objective positioning of both 

panels and turbines simultaneously is presented using 

various methods. The numerical results are also given in 

Table 9. The results show that the proposed MOTLBOGWO 

method offers better Pareto-optimal solution than other 

methods and has obtained the optimal solution with less 

dispersion. Also, according to Table 9, can be seen that the 

simultaneous use of 1 panel and 1 turbine instead of use one 

panel or one turbine, has led to a further reduction of losses 

and ENS, a further increase in the minimum voltage and net 

profit of the network. 

 

Figure 11. Pareto optimal answers set curve (PV + WT only with 

maximum capacity of 3 megawatts) 

  

Table 6. Results of DGs distribufication (SOO-ENS minimization) 

 Maximum Size 3MW (kW/pf/@Bus) 

 
1DG (3000) 

(kVA/P.F) 

3DG (1000) 

(kVA/P.F) 

Power Losses (KW) 161.26 97.04 

ENS (kWh/yr) 1.337 0.035 

Minimum Voltage (pu) 0.9466 0.9705 

Size and Location 

2097 (10) 709 (30),  

810 (10),  

957 (13) 

Total Size (kW)   

Losses Cost ($/yr) 84761.3 51008.3 

Net Saving ($/yr) 26129.7 59882.7 

 
1DG (3000) 

(kVA/P.F) 

3DG (1000) 

(kVA/P.F) 

Power Losses (kW) 100.09 55.43 

ENS (kWh/yr) 0.481 0.011 

Minimum Voltage (pu) 0.9564 0.98248 

Size and Location 
2639 (13) 0.8729 993 (13) 0.8579, 802 (29) 0.8427, 762 

(30) 0.8209 

Total Size (kW)   

Losses Cost ($/yr) 52611.4 29136.6 

Net Saving ($/yr) 58279.6 81754.4 

 

Table 7. Fuzzy multi-objective results for 1 PV placement 

 Maximum Size 3MW (kW/pf/@Bus) 

 No DG 
1PV  

(Loss objective) 

1PV  

(ENS objective) 

1PV  

(Loss+ENS bjective) 

Power Losses (kW) 210.98 101.96 161.26 124.62 

ENS (kWh/yr) 6.695 4.379 1.337 1.602 

Minimum Voltage (pu) 0.9130 0.9510 0.9466 0.9486 

Size and Location -- 2585/1@29 2097/1@10 2007/1@30 

Total Size (kW) -- 2585 2097 2007 

Losses Cost ($/yr) 110891 53590.1 84761.3 65505.4 

Net Saving ($/yr) -- 57300.9 26129.7 45385.6 
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Table 8. Fuzzy multi-objective results for 1 WT placement 

 Maximum Size 3MW (kW/pf/@Bus) 

 No DG 
1WT  

(Loss objective) 

1WT  

(ENS objective) 

1WT  

(Loss+ENS objective) 

Power Losses (kW) 210.98 61.36 100.09 73.3816 

ENS (kWh/yr) 6.695 4.406 0 1422.4586 

Minimum Voltage (pu) 0.9130 0.9667   0.9564 0.95677 

Size and Location -- 2544/0.8236@6 2639/0.8729@7 2078/0.833@30 

Total Size (kW) -- 2544 2639 2078 

Losses Cost ($/yr) 110891 32253.1 52611.4 38569.3 

Net Saving ($/yr) -- 78637.9 58279.6 72321.7 

Table 9. Fuzzy multi-objective results for 1 PV and 1 WT placement simultaneously 

 Maximum Size 3MW (kW/pf/@Bus) 

 No DG 1 PV 1 WT 1PV+1WT 

Power Losses (kW) 210.98 124.6299 73.3816 38.3211 

ENS (kWh/yr) 6.695 1.602 1.422 0.342 

Minimum Voltage (pu) 0.9130 0.9486 0.9567 0.9805 

Size and Location -- 2007/1@30 2078/0.833@30 873/1@13  1405/0.8@30 

Total Size (kW) -- 2007 2078 2278 

Losses Cost ($/yr) 110891 65505.4 38569.3 20141.5 

Net Saving ($/yr) -- 45385.6 72321.7 90749.5 

 

6. Conclusions 

In this paper, the new MOHTLBOGWO method was 

used to determine the location and capacity of solar panels 

and wind turbines for the purpose of reducing losses and 

improving reliability in the distribution network. The 

proposed problem was evaluated based on single-objective 

and multi-objective optimization based on fuzzy decision 

making in optimizing the use of renewable resources in the 

33 Buses distribution network. The effectiveness of the 

proposed method in various optimizations was presented 

and compared with the MOTLBO and MOGWO results. 

The results showed that in the optimal placement of the 

solar panels and wind turbines, unlike their single-objective 

optimization, there is a compromised between the reduction 

of losses and improved reliability, and the optimal solution 

was determined from the set of answers of the Pareto levels. 

In comparison with the MOTLBO and MOGWO methods, 

the MOHTLBOGWO method has a better convergence in 

Pareto levels and achieves optimal solutions. Also, the 

ability of the proposed method in single-objective 

optimization In comparison with previous studies in 

reducing losses, improving the minimum voltage and 

increasing network profits was confirmed. The results also 

showed that the dispersal of renewable resources in the 

distribution network would result in more reduction of 

losses, greater improvement on reliability, and more 

financial gain on the network. 
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