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Al-Saleh and Al-Kadiri first proposed double rank set sampling (DRSS). It seems that this
ranked set sampling (RSS) modification can reduce the loss of RSS efficiency caused by
ranking errors, and it is more effective than RSS and simple random sampling (SRS) to

Sampling, estimate the population mean. The proposed likelihood function is used to estimate the
Double Ranked Set parameters of the three-Parameters Weibull distribution. Based on double ranked set
Sampling, sampling, extreme ranked set sampling, ranked set sampling (RSS) and simple random

Estimation Parameter. sampling (SRS) designs, the maximum likelihood estimator (MLE) is compared with the
corresponding likelihood estimator. A simulation was carried out and the absolute relative
biases, mean square error (MSE) and relative efficiency of different schemes were
compared. It is found that, MSEs based SRS data has the largest MSEs comparing to RSS
and its modifications schemes. This study revealed that DRSS technique has the superior
over the rest of other sampling schemes. In almost all cases, DRSS has the smallest MSEs

and largest efficiencies.

whereA > 0, 8 > 0and a < x. The parameters A, 8 and

1. Introduction .
a are known as the scale, shape and location parameters,

The Weibull distribution is widely used in reliability and
lifetime studies and proved an appropriate fit for most life
data, except for data with non-monotonic empirical hazards.
This type of data is often encountered in survival analysis,
which makes it impossible for the Weibull model to analyze
it. In many applications, « is assumed known (often a = 0),
for which results [1] guarantee the existence of a unique
maximum likelihood estimator 4, 8, and [2] the first of these
is introduced tree parameter Weibull and concerned with
asymptotic theory for maximum likelihood estimators. The
cumulative distribution

function (CDF) of the three-parameter Weibull
distribution is given by

1
F(x;A,B,a)=1-— e Ax-f @
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respectively. The corresponding probability density function
(PDF) is

FOo A B a) = AB(x — a)f~lerx-wF @

and the two parameters Weibull distribution is a special case
of (2) when a = 1.

2. Some Ranked Set Sampling Techniques

In this section, various sampling procedures for selection
of units in the sample will be considered; brief descriptions
of ranked set sampling (RSS), extreme ranked set sampling
(ERSS) and double extreme ranked set sampling (DRSS)
schemes will be introduced.

Mcintyre, 1952 [3] proposed Ranked Set Sampling
(RSS) to improve the estimation of the population mean, and
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the RSS method constitutes the sampling unit, because some
measurements are not performed, the possibility of ranking
errors increases. In order to overcome this problem, various
modifications to RSS have been proposed, for example:[4]
introduced extreme ranking set sampling (ERSS), [5]
proposed median ranking set sampling (MRSS), The two-
stage RSS design developed Double Ranked Set Sampling
(DRSS) [6]. In addition to these studies, some authors have
considered using RSS or its modification to estimate the
parameters of a known distribution.

0 1 2 3 4 !

Figure 1. PDF of the EPGW distribution for different
parameter values

6

For example, [7] studied Weibull and Pareto
distributions, [8] introduced the maximum likelihood
estimation of the modified Weibull distribution parameters
using extreme ranking set sampling, [9], [10] and [11].and a
k-stage RSS design uses n*** sample units from the target
population to produce a sample of size n after k stages of
ranking developed [12]. For more details, see [13], [14], [15]
and [16], see more [17], [18] and [19].

2.1. Ranked Set Sampling

Mclintyre proposed RSS technique as a useful procedure,
the cost of quantifying all sampling units was high, but
according to the characteristics of the survey, a small set of
units can be easily ranked. Without actual quantification.
The ranking criterion may be based on the value of
accompanying variables or personal judgment, for example.
A number of studies have proved that RSS is more efficient
in estimating a large number of population parameters than
SRS.

The RSS scheme can be described as follows:
Step 1: Randomly select m®sample units from the population.

Step 2: Allocate the m2 selected units as randomly as possible
into m sets, each of size m.

Step 3: By including the smallest ordered unit in the first
group and the second smallest ordered unit in the
second group, the sample is determined for actual
quantification, This process will continue until the
largest is selected from the last group The unit of
sorting.

Step 4: Repeat steps 1 through 4 for r cycles to obtain a
sample of size mr.
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Figure 2. RSS design

Let {Xupns,i =1,2,..,m;s =1,2,..,7} be a ranked set
sample where m is the set size and r is the number of cycles.
Then the probability density function (PDF) of X, is given by

fixang) = Co [F (i )1 11 = F (e ) 1™ F (ki) 3)
(i—l)!(rln—l)! ’’

using Eq. (3) the likelihood function corresponding to RSS
scheme is given by:

where €; = =00 < Xy < 0,

Lpss(0lx) = 1_[ 1_[ C1 f (xans 0)[F (xqny; 0)1

j=1i=1

1= Flraos0)]™ 4)

2.2. Extreme Ranked Set Sampling

[4] introduced a modification of Mclntyre's RSS scheme
to produce other sampling schemes the extreme ranked set
sampling (ERSS) which does not need a complete ranking as
for RSS. They investigated ERSS by quantifying the smallest
and largest order statistics instead of detailed ranking. The
ERSS procedure can be summarized as follows

Step (1): Select m random samples of size m units from the
population.

Step (2): Rank the units within each sample with respect to
a variable of interest by visual inspection or any
other cost free method.

Step (3): If the sample size n is odd, select from mT_l samples

the smallest unit, from the other m7_1 the largest

unit and for the last sample select the median of
the sample for actual measurement.
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Figure 3. ERSS Design in Case of Odd Sample Size

The PDFs of the ERSS in case of odd sample size will be as
follows:




Aziz and Shaaban - CRPASE: Transactions of Applied Sciences 7 (2) Article ID: 2350, 1-9, June 2021

fonCeinyy) = m F(xeays 6) [1 = F(xnys0) ™
=0 < X(j1)j <© ©)

where1<i<g, q=mT

fn(Xamy;) = m[f (xamy s 6)]" 1 - F(x(im);3 6) [
—00 < X(@im)j < 00, (6)

whereg+1<i<m-1, and

2

(e 9) 1 o 9)

—00 < x(m mT-H)] < 00, (7)

m-1
2

where x;,);is the smallest order statistic from the i*" set of

the j** cycle, x(;m); is the largest order statistic from the i*"

set of the j¢" cycle and X ML 5 is the median order statistic
2

from the m®" set of the j*" cycle.

The Likelihood function corresponding to ERSS scheme for
m is odd and with r cycles is given as follows:

T q
Lggss(8) nnmf(x(il)j; 9) [F(x(il)j" 9) ]m—ll
j=1i=1

: H ﬁ m f (Xamyijs 0) [1 = F(xmy;: 6) ]m_ll'

j=1i=q+1
m-—1

[f (e 9) (F (’“<m'"z“>ﬁ")<1‘F("C"z“m)fg)))2

Step (4): If the sample size is even, select from % samples
the smallest unit and from the other ? samples the
largest unit for actual measurement.
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Figure 4. ERSé Design in Case of Even Sample Siz_e.

The PDFs of the ERSS in case of even sample size are
defined as in Eq. (5) and Eq. (6) and the Likelihood function

o INIEREE

corresponding to ERSS scheme for even set sizes (m = 2p)
and with r cycles introduced by [8] is given as follows:

r 14
Lpgss(8) Hnmf(x(il)ji 0) [1—F(x@p;;6) ]m_ll :

j=1i=1

ﬁ ﬁ m f (xqmyjs 0) [F(xmyij 6) ]m_ll

j=1i=p+1

Step (5): The cycle may be repeated r times to get n = mr
units from ERSS data.

2.3. Double Ranked Set Sampling

The best known multistage RSS procedure is DRSS
design. DRSS is a two stage design was proposed by [6],
which can be detailed as follows:

Step 1: Select m3 elements from the target population and
divide these elements randomly into m sets (of
size m?).

Step 2: Select a sample of size m in each set using RSS
method.

Step 3: Apply the RSS procedure again to elements selected
in step 2 to obtain a DRSS of size m.

Step 4: The cycle may be repeated r times.

[x(u)l X(1 m)l] [X(u)z X(1 m)Z] [x(11)3
X(m1)1 X(mm)1 x(ml)z( X(mm)2l X@m1)3
X(11)m X(1m)ym
and ... [ : : ]
x(ml)m x(mm)m

Figure 5. DRSS design in case of odd sample size
So, we have four judgment ranked sets of size m each:
— i ®» 0 @ -
Xl_]- = min {{x(n)'x(zz)' ....x(mm)},] =1,2, ...,r},

k k k
Xm,k = max {{x((li), x((zg), x( ) }’k =r+ 2’ ___’m},

+X (mm)

and
Xrs1),(r+1) = median {{X(l,r+1)' X2 r+1) oo -X(m,r+1)}}-

The likelihood function corresponding to DRSS scheme
that proposed by [9] is given as follows:

Case I: meven (m = 2r)

X(1m)3

X(mm)3
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L(6)

= lf[ Mfrm(2,)[1 - Fl:m(xl.j)]m_ll
) [ ﬁ M forem (X i) [Fm:m(xm.k)]m_l]

le=r+1 (10)
where
fim(3) =m f (e )1 = F(e )]
Fim(1,) = 1= [1 = F(x)]",
fnem Ga0) = mf (eme) [FGemp )™ and - B () =

[F(emi)]”

Case ll: modd (m =2r +1)

L (6)

ll_[mflm(xlj)[l Flm(xlj)] ]
[ 1—[ mfmm(xmk) [me(xmk)]m_ ]

k=r+2
@r+1)!
' [ﬁf”*m(’%ﬂurm)

r
(Fr+1:m(x(‘r+1),(‘r+1)) (1 - Fr+1:m(x(‘r+1).(‘r+1)))) ] (ll)
where

Fry1m (x(r+1),(r+ 1))

= Z (T) (F(x(r+1),(r+1)))t

t=r+1

. (1 — F(X(r+1).(r+1)))

3. Estimation of Three-Parameters Weibull Distribution
Parameters

This MLE method has a convergence issue and it can also
have an unfeasible value so that the location estimate of the
three-parameter Weibull model can be greater than the
minimum value of the observations . also pointed out that the
likelihood function has the unbounded likelihood problem
and the location parameter tends to approach the smallest
observation. also showed that no stationary point can yield a
consistent estimator, which results in no local maximum.
Thus, whether a global or a local maximum is sought, the
MLE is bound to fail. So we are going to differentiate
Aand B only.

In this Section MLEs for the unknown parameters of
EPGW distribution based on RSS will be reviewed,
moreover we will derive MLHSs for EPGW distribution based
on ERSS and DRSS.

3.1. Estimation Based on RSS

Let {X/,i=12,..,m;j=12,..,7} be a ranked set
sample with CDF and PDF given in Eq. (1) and Eq. (2),
where n is the set size, r is the number of cycles and m =

o INIEREE

n r. According to the Eq. (4) the Likelihood function for set
sizes m and with r cycles based on RSS is given by

LG A B a) = H 1_[ CiAB(xpy) — O‘)B_le

Jj=1i=1
8
(e—l(x(i)j—“) )

. (1 - e"‘(x(i)j—“)ﬁ)L_l
The log likelihood function can be derived directly as
follows

]
=A(xpy—o)

n—i

£.(0) xnrlogd+nrlogB + (B —1) Zzlog(x(i)j —a)

j=1i=1
+ZZ[ M) — @) ]
] 1L
(i — Dlog[1 - —A(xij—a)ﬁ
+;; i og[ e O] ]
+ Z Z(n —0) [—)\(x(i)j - (x)ﬁ]
j=1i=1

The likelihood equations becomes

r

6{’() nr Z B
% - Z (xwj — ) ]

j=1i=

T n X(l) 0() B
+ ZZO - 1) = oy =)
44 1 — e~Mx@;~o)”
T n
. B
—Z Z(n . [(x(i)j — ) ]
j=1i=1
and
6{’5(5)
3/3
T n
"4 Z log x(;
ﬁ j=1i=1
T n
£ [0y ) tog(xo )
j=1i=1
ZT:Z": e~ Mxws- «’ A(X(l)] - 0() lOg(x(L)J — O()
- 1-— e_)‘(x(l)J_“)

T n

Z Z — l) A(X(i)]‘ - OC)B] log(xi); — @)
j=1i=1

3.2. Estimation Based on ERSS

The maximum likelihood function for even set sizes (m =
2p) and with r cycles by substitution in Eq. (9) based on
ERSS is given by

r P
Lo @ o [ [[ [m 28 (e — @) (expl=2Grca; - ])

j=1i=1
m-1
. [1 — e~ Mxay—)F ]

' 1_[ 1_[ m A8 (emyij — )P~ (exp[~A(@amyi; — @)F])"

j=1i=p+1
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N
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r 4
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When m is odd (m = 2¢ + 1) and based on ERSS by 2 1— ¢ G
substitution in Eq. (8), the maximum likelihood function L is T (mTH) [_A(X(Lﬂ)j _ a)l?] 10g(Xtmy; — @)
given by :
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3.3. Estimation Based on DRSS

By substitution in Eq. (10) and Eq. (11) based on EPGW
distribution the Likelihood function for set sizes m and with
r cycles based on DRSS is given by

Case I: meven (m = 2r)

T B , mz
Lo (8) = [1_[ <mzlﬁ C e a)ﬁ ' (e—/l(xu)i.i—a) ) )
j=1

: 1_[ (m? AB (xamyij — )P exp[=A(xmyij — @)F])

k=r+1

2_
(1 - e o)

Then, the associated log-likelihood function is obtained as

?pe) = 2mlogm + mlogA + mlog g
T

+(B-1 Z log(x(1yi j — @)
=

m
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n1
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m
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k=r+1

and the likelihood equations are given by
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B
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and
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afD(g)
B "
m
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k=r+1
+m?2 Z —A(x@yij — a) ) log (x(yi,j — @)
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Z —A(xmyj — “)B) log (x(myi,j — @)
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+log(x¢41),r41) — @) +(r
+ DA gs1),041) — OF] log (Xrs1),6r41) — @)

- —a)f
o (€ A= Ay (a1 — )P log Kran),ren) — @)
1-— e—l(x(,.ﬂ),(rﬂ)—a)ﬁ

+F 1- 2F‘r+1:m(x(r+1),(r+1))
B
Fr+1:m(x(r+1),(r+1)) (1

4. Simulation Study

- Fr+1:m (x(r+1),(r+1)))

In this section, a simulation study will be conducted to
compare the maximum likelihood estimates of the Three-
Parameters Weibull distribution ratio and shape parameters
based on different sampling schemes. The simulation is
suitable for 10,000 repetitions and different sample sizes, m
= {10,15,20,25}. For different parameter values EPGW (A,
B)={(0.5,0.5), (0.5, 1.5), (1.5, 1.5)} for simulation of the
statistical software R [20]. Use MSE and efficiency
standards to compare the A and  estimators proposed using
SRS, RSS, ERSS and DRSS. Calculate the efficiency of all
estimators based on SRS relative to MLE. The efficiency of
the estimator is defined as

MSE(6,)
MSE(8,)
ifeff(8y,0,) > 1, then 8,is better than 8.

Table 1and Table 2 lists the results of bias and MSE for
different estimators, table (3) lists the efficiency results, and
Figure (6-11) shows the simulation results. The following
conclusions can be observed from Table (1-2)

eff(91, 92)

1) Itis small biases in almost all cases

2) The MSE of the (A, B) estimator based on SRS data is
greater than the MSE of the estimator based on RSS,
ERSS and DRSS data in all cases. (See Figure 6).

0.4

0.2

0 \——o

10 15 20 25

=@=S5RS =@=RSS ERSS ==@=DRSS M

Figure 6. MSEs of the estimators for 1 = 0.5
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3) Asthe setsize increases, the MSE of all estimators based

N

)

5)

on SRS, RSS, ERSS and DRSS will decrease in almost
all cases. (See Figure 7).
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m
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Figure 7. MSEs of the estimators based on SRS, RSS, ERSS,
and DRSS at (8 = 0.5)

the MSE of all estimators based on SRS, RSS, ERSS and
DRSS decreases as the value of A increases (see Figure
8). As the value of B increases, the MSE of all estimates
based on SRS, RSS, ERSS and DRSS will decrease (see
Figure 9).MSEs of the estimators for (1) based on
DRSS have the smallest

In almost all cases, The MSEs of the MRSS scheme
based on estimators (A and ) are smaller than the MSEs
of the RSS estimators.
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Figure 8. MSEs of the estimators based on SRS, RSS, ERSS,
and DRSSat1 =15
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Figure 9. MSEs of the estimators based on SRS, RSS, ERSS,
and DRSS at g = 1.5

From Table 3, it can be observed that:



Aziz and Shaaban - CRPASE: Transactions of Applied Sciences 7 (2) Article ID: 2350, 1-9, June 2021

6) As the set size increases, the efficiency of all estimators 8) inall cases, Efficiencies of the estimators for 8 based on
based on RSS, ERSS and DRSS will increase in almost DRSS have the largest efficiencies (See Figure 11).
all cases. (See Figure 10).

7) inall cases, Efficiencies of the estimators for A based on
DRSS has the highest efficiency, (See Figure 10).

15
10
5 =0
15
I = ~ =0
10 0
10 15 20 25
> —e
$ e =@=—=RSS ==@==ERSS DRSS m
0
10 15 20 25 Figure 11. Efficiencies of the estimators based on RSS,
m ERSS, and DRSS at § = 0.5
e=@==RSS ERSS DRSS

9) In almost all cases, The efficiency of (A and «)

Figure 10. Efficiencies of the estimators based on RSS, estimators on ERSS is greater than that of RSS
ERSS, and DRSS at A = 0.5 estimators

Table 1. Biases of the estimators for (A, 8) based on SRS, RSS, ERSS, and DRSS

;’hree- ., SRS RSS MRSS NRSS
weibul ) 2 p P2 B2 ;
10 -0.3290 -0.9610 -0.0923 0.4495 0.3330 0.0840 -0.2387 -0.1775
05.05) 15 -0.1080 -0.7755 -0.0791 0.4014 0.2357 -0.0696 -0.2189 -0.1639
20 -0.0887 -0.6325 -0.0477 0.2472 0.1591 -0.0430 -0.1837 -0.1031
25  -0.0440 -0.1280 -0.4442 0.1939 0.1251 -0.0273 -0.1530 -0.0808
10 -0.3948 -1.1532 -0.1107 0.5394 0.3996 0.1008 -0.2864 -0.213
(05.15) 15 -0.1296 -0.9306 -0.0949 0.48168 0.28284 -0.0832 -0.2626 -0.1968
20 -0.1064 -0.759 -0.0572 0.29664 0.1902 -0.0516 -0.2204 -0.1372
25 -0.0528 -0.1536 -0.5334 0.23268 0.1512 -0.0326 -0.183 -0.0996
10 -0.2278 -0.6653 -0.0639 0.3112 0.2305 0.0582 -0.1653 -0.1229
(L5.15) 15 -0.0748 -0.5369 -0.0548 0.2779 0.1632 -0.0482 -0.1515 -0.1135
20 -0.0614 -0.4379 -0.0330 0.1711 0.1101 -0.0298 -0.1272 -0.0714
25 -0.0305 -0.0886 -0.3075 0.1342 0.0866 -0.0189 -0.1059 -0.0559
Table 2. MSEs of the estimators for (A, §) based on SRS, RSS, ERSS, and DRSS
Three- . SRS RSS MRSS NRSS
el A p p 2 b2 ;
10  0.1999 0.0242 (0.5,0.5) 0.0147 0.1204 0.0097 0.0707 0.0057
EPGW 15  0.1033 0.0139 0.0629 0.0085 0.0415 0.0056 0.0243 0.0033
(0.5,0.5) 20 0.0512 0.0081 0.0312 0.0049 0.0205 0.0033 0.0121 0.0019
25  0.0424 0.0068 0.0258 0.0041 0.0170 0.0027 0.0100 0.0016
10 0.1683 0.0156 (0.5,1.5) 0.0095 0.0675 0.0063 0.0397 0.0037
EPGW 15  0.0924 0.0149 0.0563 0.0091 0.0371 0.0234 0.0218 0.0037
(0.5,1.5) 20 0.0283 0.0145 0.0172 0.0088 0.0114 0.0058 0.016 0.0034
25  0.0215 0.0098 0.0131 0.0060 0.0086 0.0039 0.0091 0.0023
10 0.2434 0.0395 (15,1.5) 0.0240 0.0977 0.0159 0.0574 0.0093
EPGW 15  0.1662 0.0293 0.1012 0.0178 0.0667 0.0118 0.0392 0.0069
(1.5,15) 20 0.0798 0.0259 0.0486 0.0158 0.0320 0.0104 0.0188 0.0061
25  0.06150 0.01870 0.03744 0.01139 0.02468 0.00751 0.0149 0.0044

8
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Table 3. Efficiencies of the estimators for (A, 8) based on RSS, ERSS, and DRSS

Three- RSS MRSS NRSS

Parameters m

Weibull (4, B) A B A A B
10 1.6425 (0.5,0.5) 2.8473 2.8473 4.2731 4.2758

EPGW 15 2.3625 2.1013 4.0955 3.6427 6.1463 5.4703

(0.5,0.5) 20  3.2555 2.9855 5.6435 5.1754 8.4695 7.7721
25  3.8755 3.1435 6.7183 5.4493 10.0825 8.1834
10  1.9855 (0.5,1.5) 3.4419 3.0371 5.1655 4.5609

EPGW 15  2.3533 2.4253 4.0795 4.2043 6.1224 6.3137

(0.5,15) 20  2.9852 3.1112 5.1749 5.3933 7.7663 8.0993
25  4.2556 3.9755 7.3772 6.8916 11.0714 10.3493
10 22522 (15,1.5) 3.9042 4.4347 5.8593 6.6597

EPGW 15  2.8550 2.9862 4.9492 5.1767 7.4276 7.7739

(1.515) 20  3.2156 3.6578 5.5743 6.3409 8.3657 9.5222
25  3.9980 4.1690 6.9306 7.2271 10.4012 10.8530

5. Conclusions

According to the numerical results, it can be concluded
that compared with RSS and its modification schemes, MSE-
based SRS data has the largest MSE. It can be noticed that in
almost all cases, the MSE decreases as the setting size
increases, and the efficiency increases as the setting size
increases. This research shows that ERSS is better than RSS.
Moreover, DRSS technology has advantages over other
sampling schemes. In almost all cases, DRSS has the
smallest MSE and the highest efficiency. Generally,
estimators based on DRSS, EERS, and RSS based on RSS
technology are more effective than estimators based on SRS
technology.
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