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Managing groundwater resources affected by varying climatic conditions requires applying 

reliable and precise forecasts of groundwater levels. Hence, we investigated the 

implementation of deep learning neural network called CNN-Bi LTM, which combines 

convolutional neural network layers and bidirectional long-short term memory layers (Bi 

LSTM) models for forecasts of groundwater levels in a well affected by pumping for 

irrigation. The CNN-BiLSTM model was trained with hourly groundwater level data for Jan 

2021 - Dec 2021, and the data was divided into 70% for training and 30% for testing. 

Besides, Bayesian optimization was used to find the best range of variables for the model, 

such as the number of Bi LSTM units, the number of Bi LSTM layers, and the initial learning 

rate. Also, the Adaptive Moment Estimation (Adam) is used to calculate adaptive learning 

rates. As a result, the model showed promising results in the taring stage with a regression 

value equal to 0.9173. In comparison, the model showed acceptable results in the testing 

stage with regression equal to 0.6324, and the optimization duration lasted for 21 hours. 

Further, the optimization method showed that the best number of Bi LSTM units is 192, the 

best number of Bi LSTM layers is two layers, and the best initial learning rate is 0.01. 

 

1. Introduction 

The groundwater extraction overextended the recharge rate 

in many countries worldwide, which led to various problems, 

such as water quality degradation and raised pumping fees  

[1–3] In addition, it has harmful effects in urban and 

agricultural regions [4], and water quality and water resource 

reliability availability monitoring have been the subject of 

many scientific studies [5–7]. Hence, it is essential to create 

a more valuable knowledge of the differences in 

groundwater levels to precisely emulate the groundwater 

level and properly manage groundwater resources [8]. 

Groundwater modeling is the many valuable standards of 

delivering information for groundwater management design 

because it can predict the potential trend of available 

groundwater resources [9], and conceptual or numerical 
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models were commonly used to simulate the groundwater 

level as the primary study methods [10–13]. Nevertheless, 

these groundwater models have noticeable restrictions, such 

as simplifying complex dynamic procedures requiring 

enormous data and multiple input variables [14, 15]. In 

contrast, predicted groundwater levels can be acquired from 

restricted available data using AI approaches, which can be 

a practical option when attempting to comprehend the 

mechanisms governing the differences in groundwater water 

levels [16]. Besides, the development in soft computing 

applications like artificial intelligence (AI) and the 

availability of data acquired from field and computer 

simulations have supported researchers to employ AI 

approaches such as machine learning (ML) and deep 

learning (DL) methods to analyze collected data linked to the 

water resource management schemes [17–19]. Moreover, 
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data-driven modeling approaches were improved rapidly for 

numerous research purposes [19, 20]. For example, various 

investigations involved ML and DL models in examining the 

predictive outcomes of multiple models in multiple fields 

such as hydrology and hydraulics [21, 22]. 

AI techniques such as optimization and deep learning 

were applied for various fields and simplified the solution 

[23–26]. For example, recurrent neural networks (RNN), an 

application of deep understanding, can deal with vast 

sequence data. Recurrent neural networks (RNNs) were 

adopted for simulating groundwater time series data [24, 27, 

28] Still, it has been discovered that standard RNN contains 

the problem in catching long period dependencies between 

parameters due to two vanishing and exploding gradients, 

where weights in the neural network reach zero [29–31] 

Besides, the implementation of RNN in the precision of time 

series data has not been enhanced. In contrast, the variant of 

RNN is a long and short-term memory network (LSTM) 

showed an excellent performance to bypass the vanishing 

and exploding gradient issues, and LSTM can detour training 

issues by stopping unnecessary details from being handed to 

future model forms while keeping remembrance of 

significant past circumstances [32]. 

LSTM model has been successfully applied to 

groundwater depth level prediction [33]. [34] used the LSTM 

model to emulate the impacts of specified groundwater 

abstraction and rain on groundwater levels. [35] performed a 

process founded on Bidirectional Long Short‑Term Memory 

(Bi-LSTM) to capture the Spatio-temporal process of 

groundwater with specified data. [36] used the LSTM to 

obtain lost data in groundwater records and noted that LSTM 

is suitable for repairing the GWL variation. [37] used the 

LSTM neural network to forecast ground-level forecasting. 

[18] used LSTM and back-propagation neural network (BP-

ANN) for simulation of the groundwater level and showed 

that the LSTM provides good results for simulating the 

monthly groundwater level and is better than the BP-ANN 

model. [38] employed BiLSTM neural network model for 

modeling the monthly groundwater level. 

Most AI approaches were used to simulate groundwater 

levels by employing precipitation, air temperature, 

evaporation, pumping rates, soil temperature, humidity, and 

wind speed [39, 40]. However, a few proposed models have 

been successfully predicted the groundwater level depending 

on the recorded groundwater level as the only input [41, 42]. 

Besides, a gap can be explored and studied more to improve 

the performance of machine learning models for modeling 

the groundwater level using only one input instead of 

different parameters as it is not easy to collect meteorological 

data. Therefore, the article aims to utilize only the hourly 

groundwater level data as input to simulate the groundwater 

level and examine the performance of a CNN - bidirectional 

LSTM  neural network model (CNN-BiLSTM) for 

simulating measured groundwater level as there is not much 

research regarding the simulating of the groundwater level 

using deep learning models like  LSTM or CNN-BiLSTM 

neural network with only groundwater level as input data. 

Besides, this study aims to demonstrate that the deep 

learning models can simulate groundwater levels by 

employing fewer input variables. 

2. Methodology 

2.1. CNN-Bi LSTM  

Bidirectional -LSTM (Bi-LSTM) is a long-short term 

memory (LSTM) format, a special RNN. It transforms the 

separate activations into dependent activations function by 

giving all the layers the exact importance and biases and 

recognizing per prior result to deliver the following hidden 

layer as input. For example, in a straightforward RNN 

approach, at per iteration, t, the hidden layer persists a hidden 

state, ℎt, and updates and revs it according to the layer input, 

xt, and prior hidden state, ℎt−1, using the following Eq. (1) 

[35]: 

ℎ𝑡 =  𝜎ℎ( 𝑊𝑥𝑡 + 𝑉ℎ𝑡 − 1 − 𝑏ℎ)  (1) 

W is the weight matrix provided from the input to the 

hidden layer, V is the weight matrix between two straight 

hidden conditions (ℎt−1 and ℎt), bℎ is the bias vector for the 

hidden layer, and σℎ is the activation function to develop the 

hidden form. The network output can characterize as Eq. (2)  

[35]: 

𝑦𝑡 =  𝜎𝑦( 𝑈ℎ𝑡 + 𝑏𝑦) (2) 

U is the weight matrix from the hidden to the output 

layer, and σy is the activation function of the output layer. 

Eventually, the hidden layer provides the outcome yt. The 

LSTM layers process sequence data uni-directionally and 

limit it to catch the approach's randomness. Nevertheless, a 

backward LSTM layer can provide bi-directionally into the 

LSTM network. Therefore, designing a Bi LSTM layer 

including a forward LSTM layer and a backward LSTM 

layer functions sequence data with two different hidden 

layers and links them to the exact outcome layer [43] 

Convolutional Neural Network (CNN) is a network model 

presented by [44], and it is a type of feed-forward neural 

network. It can be used to forecast time-series data [45]. The 

local perception and weight sharing of CNN can enormously 

decrease the number of parameters, hence enhancing the 

implementation of learning models. CNN includes the 

convolution, pooling, and complete connection layers [46], 

as shown in Figure 1. Per convolution layer encloses a 

prevalence of convolution kernels, and these layers drag the 

data feature. Its computation is as Eq. (3) 

 

𝑙𝑡 =  tanh (𝑥𝑡 ∗ 𝑘𝑡 + 𝑏𝑡) (3) 

 

where 𝑙𝑡  is the output value after convolution, tanh is the 

activation function, 𝑥𝑡  is the input vector, 𝑘𝑡  is the weight of 

the convolution kernel, and 𝑏𝑡  is the bias of the convolution 

kernel [47]. 

The CNN neural network was adopted for various 

problems, and Figure 1 shows the structure of the CNN 

model [48]. [49] used the convolution neural network for 

handling classification problems to forecast pollution. [50] 

used the convolutional neural networks to create a flood 

vulnerability map. [51] used a CNN model to anticipate 

spatially distributed water for momentous overflow 

occasions. [52] used CNN and LSTM models to create a map 

for potential groundwater. 
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A CNN-LSTM model, as shown in Figure 2 integrates 

CNN layers that drag the feature from input data and LSTMs 

layers to supply series forecast, and it is commonly used for 

movement recognition. Their typical characteristics are 

designed to use visual time series forecast problems [53]. 

LSTM with convolutional neural network layers has been 

employed to encode spatiotemporal details for various 

purposes, like rainfall nowcasting [54]. Nevertheless, in 

hydrology, the applications of CNN-LSTM approaches have 

not been used to solve problems [55]. The detail for both 

CNN and Bi LSTM neural networks is explained in the 

literature broadly. 

We employed in this study the CNN layer with the Bi 

LSTM layers model (CNN Bi-LSTM) for simulating hourly 

groundwater level data, as shown in Figure 2. Also, we used 

Bayesian optimization to find the best model for simulating 

groundwater levels. The detail of hyperparameters for the 

BI-LSTM model and the other parameters is illustrated in 

Table 1, and Figure 3 shows the modeling process. 

The performance of CNN-Bi LSTM was evaluated based on: 

Mean squared error (MSE) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑇𝐾 − 𝑂𝐾)2

𝑛

𝑘=1

 (4) 

where n is the number of data, 𝑂𝐾  is the network outcome, 

𝑇𝐾  is the actual target. 

 

Root mean squared error (RMSE): 

𝑅𝑀𝑆𝐸 = ∑(
(𝑇𝐾−𝑂𝐾)2

𝑛
)0.5

𝑛

𝑘=1

 (5) 

Spearman's Rank-Order Correlation: 

 

𝜌 = 1 −  
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 (6) 

  

where 𝜌 is Spearman's rank correlation coefficient, 𝑑𝑖 is the 

difference between the two ranks of each observation, and n 

is the number of observations. 

 

 

 

 
Figure 1. Overview of CNN architecture (Adopted from [48]). 

 
Figure 2. CNN-LSTM model (Adopted from [48]). 

Table  1 CNN Bi-LSTM model. 

The training parameters of the model 

Number of Bi-LSTM Layer  1 to 4 

Hyperparameters 
Number of Bi-LSTM Units 75 to 200 

Initial Learning Rate 0.01 to 1 

L2Regularization Rate 0.0000000001 to 0.01 

Number of Epochs 400 

 

Number of Iterations for Optimization 50 

Minimum Batch Size  60 

Training Optimizer Adam 

Dropping Learning Rate During Training  Piecewise 

The factor for Learning Rate 

Dropping 
0.5 
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Figure 3 Modeling steps. 

3. Data 

The hourly groundwater data were collected from a 

CSD Interactive Data Map (Conservation and Survey 

Division/the University of Nebraska–Lincoln) [56], which 

provides real-time groundwater level data. Also, the 

collected data from a well affected by irrigation pumping. 

As shown in Figure 4, the groundwater level data is hourly 

data, and its unit is feet below the land surface for one year 

from 01/Jan/2021 to 30/Dec/2021. The data was divided 

into 70% for training (5845 data or from 01/ Jan / 2021 to 

17/ Sep /2021) and 30% for testing (2509 data or from 

18/Sep /2021 to 30/ Dec / 2021). It is essential to mention 

that the data did not normalize or standardized and used as 

raw data for training and testing the model.  

 
Figure 4 Groundwater level. 

4. Result and Discussion 

The optimized variables were obtained, as shown in 

Table 2, and the result of the model is from the best model. 

The best model is obtained after running the model for 

almost 21 hours with 50 iterations for the optimization 

process using a computer with Intel(R) Core (TM) i7-

9750H (9 th Gen) CPU (2.60GHz) and RAM equal to 16 

GB. 

As shown in Figure 5, the model has shown good 

performance in the training stage with regression value (R2) 

equals 0.9173, and rank correlation equals 0.9939 (Figure 

6). While in the testing stage, the model showed acceptable 

performance with regression value (R2) = 0.6324 and rank 

correlation = 0.9133, as shown in Figure 7 and Figure 8. 

The test results are not too high, which can be attributed to 

the pumping, which the model could not catch the quick 

changes in the groundwater level. Still, the model can 

simulate the hourly groundwater level with high correlation 

and lower MSE error. 

Table 2 Optimization of the model  

Optimized Parameters  

Number of Bi-LSTM Layer  2 

Number of Bi-LSTM Units 192 

Initial Learning Rate 0.01 

L2Regularization Rate 0.00006 

 
Figure 5. Regression of training dataset. 
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Figure 6. Rank correlation of training dataset. 

 
Figure 7. Rank correlation of test dataset. 

 

 
Figure 8. Regression of test dataset.

5. Conclusion 

The groundwater level is an essential element that can 

be impacted due to environmental variation. For example, 

research of weather variation presents drops in rainfall and 

increases in temperature, which increase the possible 

harshness of water resources shortage [35]. Moreover, 

Investigation of the groundwater level is necessary for 

efficient groundwater resources management, and it 

provides information on the groundwater resources 

availability. Crucial details about aquifer dynamics are 

usually entrenched in the continuously documented 

groundwater time series data like the water level [57]. 

Hence, we used a hybrid neural network called CNN- Bi 

LSTM, which combines convolutional neural 

network layers and bidirectional long-short term memory 
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layers (Bi LSTM) to simulate hourly time series 

groundwater level  

The primary outcomes of this study are as follows: 

• The CNN-Bi LSTM has shown acceptable results in the 

training and testing stages, especially in training with 

high regression. 

• The model has demonstrated exemplary performance 

with data collected from well affected by pumping, 

especially in the training stage. 

•  The Bayesian optimization was used for finding the 

best model for the simulating, and it reached the best 

state within 21 hours approximately. This long duration 

can be attributed to the extensive ranges of optimized 

variables to determine the best parameters and features. 

Still, it is recommended to conduct more research that 

can improve the outcomes by considering these limitations 

and suggestions:  

• The limitation of this work is that only Adaptive 

Moment Estimation (Adam) is used to calculate 

updated learning rate, and it is better to examine the 

effect of various machine learning optimizers.  

• The Bayesian optimization was used to find the best 

parameters like layers or initial learning rates. Still, the 

model can be optimized using various approaches for 

optimization like particle swarm optimization and 

genetic algorithm optimization  

• The model's performance can be analyzed using 

multiple percentages of data for training and testing 

datasets.  

• The performance of the CNN- Bi LSTM model can be 

compared with a simple LSTM neural network and a 

simple CNN neural network.  

• The model is trained with hourly groundwater level 

data. Therefore, it is recommended to train the model 

with different time steps data to examine the effect of 

time steps such as monthly or daily data on the results.  

• The groundwater level data was used as raw data. It is 

recommended to train the AI model with normalized 

data to investigate the impact of normalization on the 

accuracy of prediction. 
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