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In the rapidly advancing landscape of contemporary technology, power electronics assume 

a pivotal role across diverse applications, ranging from renewable energy systems to electric 

vehicles and consumer electronics. The efficacy and precision of these power electronics 

systems stand as cornerstones of their functionality. Within this context, the integration of 

machine learning techniques assumes paramount significance. This article endeavors to 

present an extensive and comprehensive review of the machine learning techniques that find 

application in power electronics control and optimization. Through meticulous exploration, 

we aim to elucidate the profound potential of these methods in shaping the future of power 

electronics control and optimization. 

 

1. Introduction 

Power electronics refers to the application of solid-state 

electronics to control and convert electrical power. These 

systems are found in various domains, including industrial 

automation, renewable energy, transportation, and more. The 

efficiency and reliability of power electronic systems are 

vital for their successful operation [1–8]. 

Machine learning techniques have been applied to power 

electronics control and optimization to improve the 

performance of power electronics systems [9–11]. These 

techniques can be used to reduce the computational expense 

associated with characterizing DC-DC converters, which is 

necessary for designing and optimizing power electronics 

systems. Machine learning techniques such as support vector 

regression and artificial neural networks have been utilized 

to accurately predict DC-DC converters' performance [12–

17]. 
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In addition, several publications have reviewed artificial 

intelligence (AI) applications for power electronic systems 

[7,18–20]. These applications include optimization, 

classification, regression, and data structure exploration and 

can be applied to the design, control, and maintenance phases 

of the power electronics system lifecycle [10]. AI techniques 

such as expert systems, fuzzy logic, metaheuristic methods, 

and machine learning have been discussed in the literature 

[10,21].  

The existing application of machine learning methods for 

enhancing power system resilience has been reviewed in 

[20], which is the ability to withstand and recover from 

extreme events or attacks. The paper discusses the challenges 

and opportunities of applying machine learning for various 

aspects of power system resilience, such as situational 

awareness, contingency analysis, restoration planning, and 

adaptive protection. The paper also describes machine 

learning techniques and their applications in power system 

resilience. 
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Modeling Energy Consumption Using Machine Learning 

has been introduced in [22]. This paper develops predictive 

models for energy consumption using machine learning 

techniques. The paper compares the performance of different 

machine learning techniques, such as Multiple Linear 

Regression, Random Forest Regressor, Decision Tree 

Regressor, Extreme Gradient Boost Regressor, Support 

Vector Machines, K-Nearest Neighbor, and deep learning. It 

has been shown that Random Forest Regressor and deep 

learning have the best accuracy among the tested techniques. 

In [23], a systematic review of the fault detection and 

diagnosis techniques for complex systems and technologies 

has been presented. Fault detection and diagnosis are 

processes that monitor the system health and identify the 

causes and locations of malfunctions. The paper categorizes 

the techniques into model-based and data-driven approaches, 

focusing on artificial intelligence-based methods. The article 

also describes the typical steps involved in designing and 

developing automatic fault detection and diagnosis systems. 

In another study [24], analysis of power flows, power 

quality, photovoltaic systems, intelligent transportation, and 

load forecasting have been discussed in detail. The survey 

investigates the most recent and promising ML techniques 

proposed by the literature, highlighting their main 

characteristics and relevant results. The review revealed that 

ML algorithms can handle massive quantities of data with 

high dimensionality, allowing the identification of hidden 

characteristics of complex systems. Hybrid models generally 

show better performances when compared to single ML-

based models. 

Solar power generation can be unpredictable due to cloud 

cover and weather conditions [25].  This study uses 

meteorological data to predict solar power output, with 

Support Vector Regression proving to be a more effective 

method than other machine learning algorithms [25]. 

Various parameter tuning techniques, including Random 

search, Grid search, and Tree-based optimization, are 

employed to create a robust model for accurate solar power 

prediction. 

Traditional power electronics systems for fuel cell-

powered electric vehicles often involve two separate boost 

converters, which can be challenging for high-density 

vehicle applications. In [26], the authors discussed methods 

for designing an optimal system that integrates fuel cells and 

batteries in electric vehicles. It proposes a solution using 

reinforcement learning to adapt to changing conditions, 

resulting in higher efficiency and reduced carbon emissions, 

which is especially beneficial for heavy-duty commercial 

vehicles. 

The field of power electronics, machine drives, and 

electric vehicles increasingly focuses on data-driven fault 

classification for power converter systems. A data-driven, 

supervised machine learning approach that combines 

Expectation Maximization Principal Component Analysis 

(EMPCA) and Support Vector Machine (SVM) to classify 

different fault topologies in real-time control systems has 

been discussed in [27]. The methodology is tested on non-

inverting Buck-Boost DC-DC power converters for various 

fault scenarios, demonstrating its feasibility through 

intensive simulations and comparison studies. 

Overall, machine learning techniques which are depicted 

in Figure 1 offer a promising approach for improving the 

performance of power electronics systems through control 

and optimization [28,29]. Further research is needed to fully 

realize the potential of these techniques in this field. In this 

review, we discuss the role of control and optimization, and 

traditional approaches. We will also discuss SVM and neural 

networks, and their impact on power electronics.  Figure 2 

shows some real-world applications of ML algorithms.  
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Figure 1. Various machine learning algorithms 
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Figure 2. Real world applications of machine learning 
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2. Methodology of the Review 

The main goal of this systematic review is to offer an in-

depth analysis of the machine learning techniques for power 

electronics control and optimization. The following are the 

most important research concerns this work addresses: 

• Advancements in power electronics technology 

• Efficacy and precision 

• Integration of machine learning 

For this study, a sizable amount of literature was 

carefully screened in order to gather pertinent research 

articles. To this extent, peer-reviewed journal articles, 

conference papers, research pieces, and review articles were 

gathered from all popular databases including Science 

Direct, Google Scholar, Scopus, IEEE, etc. The fields of 

power electronics control and optimization, such as power 

electronics converter, control strategies, and power 

electronics applications, were where the majority of the 

research-gathering process's keywords were targeted. 

3. The role of Control and Optimization 

Control and optimization play a crucial role in power 

electronics systems. Power electronics systems are used to 

convert and control electrical energy, and they are found in 

a wide range of applications, from renewable energy 

systems to electric vehicles. Control algorithms are used to 

regulate the output of these systems, ensuring that they 

operate efficiently and reliably. Optimization techniques, 

on the other hand, are used to improve the performance of 

power electronics systems by finding the best operating 

conditions [9–11]. 

In recent years, machine learning techniques have been 

applied to power electronics control and optimization to 

improve the performance of these systems. These 

techniques can be used to reduce the computational expense 

associated with the characterization of dc-dc converters, 

which is necessary for the design and optimization of power 

electronics systems consisting of multiple converters. 

Machine learning techniques such as random forest and 

gradient boosting have been shown to be capable of 

accurately predicting the performance of commercially 

available dc-dc converters. Overall, control and 

optimization are essential for ensuring the efficient and 

reliable operation of power electronics systems [12–17]. 

4. Traditional Approaches vs. Machine Learning 

Traditionally, control and optimization in power 

electronics relied on mathematical models and heuristic 

algorithms. Machine learning, however, offers a data-driven 

approach that can adapt to changing conditions and 

optimize performance in real-time. Traditional approaches 

for power electronics control and optimization involve 

using analog control techniques and sensor-based methods 

for temperature estimation [30].  These methods have been 

used for a long time and have proven to be effective. 

However, with the advent of machine learning (ML) and 

artificial intelligence (AI), there has been a shift towards 

using data-driven approaches for power electronics control 

and optimization [31]. 

ML techniques such as fuzzy logic, feed-forward neural 

networks, recurrent neural networks, and reinforcement 

learning are being developed for power electronics control 

and optimization [31]. These techniques allow for more 

complex and dynamic non-linear control surfaces to 

enhance efficiency, reliability predictions, and health 

monitoring in power converters. 

As it is mentioned above, traditional approaches for 

power electronics control and optimization involve using 

analog control techniques and sensor-based methods, while 

machine learning-based data-driven approaches are 

becoming standard tools for the automated high-

performance control and monitoring of electric drives [30]. 

5. Supervised Learning for Control 

Supervised learning is a category of machine learning 

where an algorithm is trained using labeled data to 

understand the relationship between input and output 

variables [32]. In the context of power electronics control 

and optimization, supervised learning helps in forecasting 

how a system will behave based on input variables like 

voltage, current, and temperature [10,33–37]. Several 

supervised learning techniques are applicable in power 

electronics, including linear regression, support vector 

machines (SVMs), and neural networks [9,38–40]. 

5.1. Linear Regression 

Linear regression is a straightforward and widely 

employed supervised learning method that handles both 

regression (predicting numerical values) and classification 

(assigning data points to categories) tasks. Its core principle 

is to determine the best-fit line that minimizes the sum of 

the squared differences between predicted and actual 

values. In the context of power electronics, linear regression 

can be used to predict the system's output voltage or current 

based on input parameters. 

5.2. Support Vector Machines (SVMs) 

SVMs are another prevalent supervised learning 

approach suitable for both classification and regression 

problems. SVMs function by identifying a hyperplane that 

effectively separates data into distinct categories while 

maximizing the margin between these categories. In power 

electronics control and optimization, SVMs can classify the 

system into different operational modes or predict output 

variables (like voltage or current) based on input parameters 

[38,41]. 

5.3. Neural Networks 

Neural networks are more intricate supervised learning 

models designed to handle a broad array of tasks, including 

image recognition, speech processing, natural language 

understanding, and power electronics control and 

optimization. 

They emulate the functioning of the human brain, 

comprising layers of interconnected nodes (neurons) that 
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process and transmit data. In the power electronics context, 

neural networks can predict output variables (voltage or 

current) based on input parameters or optimize system 

parameters for specific applications. 

As it is clear, supervised learning techniques like linear 

regression, support vector machines, and neural networks 

are valuable tools for power electronics control and 

optimization. They enable the prediction of system behavior 

based on input data and the fine-tuning of system 

parameters to achieve specific goals in power electronics 

applications [42–45]. 

6. Unsupervised Learning for Optimization 

Unsupervised learning is a machine learning paradigm 

where the algorithm works without labeled data and aims to 

discover inherent patterns or structures within the data. In 

power electronics, unsupervised learning techniques play a 

significant role in optimization processes [46,47]. 

Clustering and Principal Component Analysis (PCA) 

discussed following are two key techniques of unsupervised 

learning [10,48–50].  

6.1. Clustering  

Clustering is a method used to group similar data points 

together based on their characteristics or features [47,51]. In 

the context of power electronics, clustering can be 

employed to the following. 

6.1.1 Identify Patterns in Power Consumption Data 

Clustering algorithms can group consumers or devices 

exhibiting similar power usage patterns. This information 

can be valuable for load balancing, as it helps utilities 

allocate resources more efficiently [52,53]. 

6.1.2 Detect Anomalies 

Clustering can also be used to identify unusual or 

anomalous patterns in power consumption. For example, 

sudden spikes or drops in energy usage can indicate faults 

or irregularities in the power system. Detecting these 

anomalies is crucial for fault detection and preventive 

maintenance [54]. 

6.2. Principal Component Analysis (PCA) 

PCA is a dimensionality reduction technique used to 

simplify complex datasets by transforming them into a 

lower-dimensional space [55]. In power electronics, PCA 

can be beneficial in the following ways: 

6.2.1 Reducing Data Complexity 

Power systems generate vast amounts of data. PCA 

helps by identifying the data's most significant components 

(principal components), thereby simplifying it [56]. 

6.2.2. More Efficient Optimization 

Simplified data resulting from PCA can lead to more 

efficient optimization algorithms. These algorithms can be 

applied to load scheduling, power flow analysis, and system 

parameter tuning tasks. 

As clearly described above, unsupervised learning 

techniques, such as clustering and Principal Component 

Analysis, are powerful tools in power electronics. 

Clustering helps identify patterns and anomalies in power 

consumption, aiding load balancing and fault detection. On 

the other hand, PCA reduces the dimensionality of complex 

power system data, making it more manageable for 

optimization processes ultimately contributing to more 

efficient power electronics systems. 

7. Reinforcement Learning Application in Power 

Electronics 

Reinforcement learning (RL) is a machine learning 

paradigm where an agent learns by interacting with an 

environment [20,57,58]. It aims to maximize a cumulative 

reward signal over time by making a sequence of decisions. 

In power electronics, RL offers unique advantages and 

applications as follows. 

7.1 Adaptive Control 

Power electronics systems often operate in dynamic and 

uncertain environments. RL suits these scenarios well 

because it allows systems to learn and adapt to changing 

conditions. RL algorithms can continuously adjust control 

parameters, such as voltage or current setpoints, to optimize 

system performance. This adaptability is particularly 

beneficial in systems with varying loads or renewable 

energy sources [59,60]. 

7.2. Energy Management 

Energy management in power electronics involves 

optimizing the allocation and consumption of electrical 

energy. RL can be employed to make real-time decisions 

regarding energy distribution. RL algorithms can 

dynamically manage microgrids by deciding when to draw 

power from the grid, store energy, or use renewable sources 

based on real-time data and demand [61,62]. 

7.3. Fault Detection and Diagnosis 

RL can play a role in the early detection and diagnosis 

of faults in power electronics systems. By learning the 

system's normal behavior, RL agents can identify deviations 

that may indicate defects or anomalies. Once a fault is 

detected, RL algorithms can suggest corrective actions or 

control adjustments to mitigate the impact of the fault, 

ensuring system reliability and safety. 

7.4. Optimization of Renewable Energy  

Renewable energy sources, like solar and wind, are 

inherently variable. RL can optimize the integration of these 

sources into the power grid by making real-time decisions 

on energy generation and distribution. RL can help balance 

the grid by adjusting the output of renewable sources, such 

as wind turbines, to maintain grid stability in fluctuations. 

As described above, reinforcement learning is a powerful 

tool for adaptive control and optimization in power 

electronics. Its ability to learn from environmental 

interactions makes it well-suited for managing complex and 

dynamic power systems, optimizing energy usage, 
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detecting faults, and integrating renewable energy sources 

efficiently. As science advances, RL will likely play an 

increasingly crucial role in improving power electronics 

systems' reliability, efficiency, and sustainability [58,60]. 

8. Challenges in Implementing Machine Learning 

Implementing machine learning in power electronics 

systems presents significant potential benefits, but it also 

comes with challenges related to data quality, model 

interpretability, and meeting real-time requirements. 

Overcoming these challenges is crucial to harness the full 

potential of machine learning for improving the efficiency, 

reliability, and performance of power electronics 

applications. 

8.1. Data Collection and Preprocessing 

High-quality data collection is the foundation of any 

successful machine-learning application [63]. In the context 

of power electronics, this means gathering accurate and 

comprehensive data related to voltage, current, temperature, 

and other relevant parameters. Data may come from various 

sources, such as sensors and monitoring devices placed 

within the power system. Ensuring the reliability and 

consistency of this data is critical. 

Data preprocessing involves cleaning, transforming, and 

structuring the data before feeding it into machine learning 

models. This step is vital because raw data may contain 

noise, outliers, or missing values that could lead to 

inaccurate model predictions [64]. 

Data preprocessing also includes feature selection, 

where the most relevant variables are chosen to train the 

model effectively. Inaccurate or irrelevant features can 

negatively impact model performance. 

8.2. Model Interpretability 

In specific applications of power electronics, 

particularly those with safety or regulatory implications, it's 

essential to have interpretable machine learning models. 

Interpretable models are those whose decisions can be 

understood and explained in a human-readable manner. 

This is crucial for ensuring transparency and accountability. 

For instance, if a machine learning model is used to control 

voltage levels in a power grid, engineers and regulators need 

to know why the model made a particular decision in case 

of unexpected outcomes or errors [65]. 

Achieving model interpretability may require simpler 

algorithms or techniques that provide clear insights into the 

model's decision-making process. While complex deep 

learning models can offer excellent performance, they are 

often less interpretable than simpler models like decision 

trees or linear regression. 

8.3. Real-time Constraints 

Power electronics systems often operate in real-time 

environments, where decisions must be made rapidly to 

maintain stability and safety. Many machine learning 

algorithms are computationally intensive and may not be 

well-suited for real-time decision-making [66]. 

Meeting real-time constraints involves optimizing the 

machine learning model's efficiency and responsiveness. 

This can be achieved through techniques like model 

simplification, parallel processing, or using specialized 

hardware accelerators. Additionally, models may need to be 

continuously retrained or updated in real-time as new data 

becomes available to ensure they remain accurate and 

adaptive to changing conditions [67]. 

9. Discussion 

In this study, we conducted an extensive literature 

review to ascertain the prevalence of various machine 

learning techniques in the realm of power electronics 

control and optimization. Our method involved 

comprehensive searches across reputable academic 

databases and specialized journals (for selected 24 papers in 

the literature), utilizing specific search queries tailored to 

each machine learning technique of interest, including 

linear regression, support vector machines, neural networks, 

clustering, and Principal Component Analysis (PCA). 

Subsequently, we meticulously filtered and analyzed the 

retrieved publications, focusing on their relevance to power 

electronics, control, optimization, and the specified 

machine learning methodologies. The obtained data enabled 

us to calculate the respective percentages of research works 

employing each technique. The resulting percentages, 

depicted in Figure 3, offer valuable insights into the relative 

adoption and utilization of these machine learning 

approaches within the field of power electronics control and 

optimization. As it is shown below, the percentages are as 

follows, linear regression (8 %), support vector machines 

(36 %), neural networks (22 %), clustering (28 %), and 

Principal Component Analysis (6 %).  We have also 

compared several ML based models applied in power 

electronics control and optimization for better prediction. 

The comparison results and utilized metrices and 

parameters are also presented in Table 1.  

 

 

 
Figure 3. Percentage of machine learning algorithms utilized in the field of power electronics control and optimization. 
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Table 1. Comparison of various machine learning models 

References Algorithms Important parameters Metrics Values 

[41] SVM Input voltage and switching frequency 𝐼𝑟𝑚𝑠 0.84 

[25] SVM Random Search RMSE 2254.66 

[68] Random forest Correlation coefficient RMSE 3.3714 

[69] Neural network A and λ Overshoot (%) 29 

[45] 1-NN TS COM F1-score >95% 

[70] NN 𝐾𝑝 Overshoot (%) 0.976 

[71] FF-NN 𝑉𝑟𝑒𝑓 Voltage 80 

[72] NN H, S, L, N, I MAE 0.85 

[73] Auto-ML DC link voltage Voltage 0.4 

[74] KNN 𝑆𝑖 𝑅2 0.79 

 

10. Conclusions 

This article comprehensively overviews the symbiotic 

relationship between machine learning techniques and 

power electronics control and optimization. As we navigate 

the dynamic landscape of modern technology, it becomes 

increasingly apparent that power electronics are 

instrumental across a wide range of applications. The 

precision and efficiency of power electronics are non-

negotiable facets of their functionality, and herein lies the 

significance of the integration of machine learning 

methodologies. Through this exploration, we have 

uncovered the vast potential of machine learning techniques 

in enhancing the control and optimization of power 

electronics systems. These methods empower us to make 

informed decisions, adapt to changing conditions, and 

achieve higher levels of energy efficiency. As we look 

ahead, it is evident that the synergy between machine 

learning and power electronics is poised to drive further 

innovation, revolutionizing how we harness and utilize 

electrical power in our interconnected world. The journey 

toward the future of power electronics control and 

optimization has begun, guided by the powerful beacon of 

machine learning. 
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