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The imperative role of fault detection in manufacturing processes cannot be overstated, as it 

is essential for ensuring the utmost quality, efficiency, and safety standards. This study 

introduces a sophisticated anomaly detection method for manufacturing processes, capable 

of recognizing nine distinct control chart patterns (CCPs). This technique is founded on the 

intelligent integration of shape descriptors and statistical indicators, further enhanced by an 

optimized fuzzy classification system. The methodology unfolds across three stratified 

stages, where each tier employs a meticulously chosen array of shape and statistical features 

that feed into the classifier to identify subsets of patterns. The adaptive neuro-fuzzy 

inference system (ANFIS), known for its prowess in pattern recognition challenges, serves 

as the classifier within each layer, honed by the Harris Hawks Optimization (HHO) 

algorithm. This research's core contributions are the strategic extraction of novel features, 

the augmentation of ANFIS's robustness, and the comprehensive inclusion of nine CCPs in 

the detection framework. Empirical simulations underscore the superior performance of the 

proposed approach, achieving a remarkable 99.6% accuracy in pattern classification, thus 

outstripping comparable methodologies in efficacy. The industrial applicability of this 

system is its capacity to adapt to diverse manufacturing settings, significantly reducing the 

time and resources typically required for fault detection. 

 

1. Introduction 

The pursuit of quality is a constant across all manufacturing 

and service sectors. As we have grown more cognizant of its 

significance, the development of formalized quality control 

and enhancement practices has naturally evolved. In 

manufacturing, every product is a composite of various 

attributes that cumulatively define its quality. These 

attributes, known as quality characteristics, are the focal 

points of quality engineering. This discipline employs a 

blend of operational, managerial, and engineering practices 
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to ensure that these characteristics meet predefined standards 

with minimal deviation [1, 2]. 

In the realm of statistical quality management, there are 

two primary categories of data used to assess characteristics: 

quantitative data, which includes continuous measures such 

as weight or pressure, and qualitative data, which involves 

categorical counts. These classifications are crucial in 

ensuring that the attributes of both individual components 

and the finished goods align with predefined standards. By 

way of illustration, the precise dimension of a shaft in a 

vehicle is critical to its proper functioning [3, 4]. 

http://www.crpase.com/
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Figure 1. Illustration of nine control chart patterns with delineated upper and lower control limits, highlighting the complexity in their 

discrimination and classification 

 
Statistical Process Control (SPC) is an essential 

technique that employs tools like control charts to observe 

and maintain the quality of process outputs. These charts use 

a central line, generally depicting the process's average 

performance, and upper and lower control limits (UCL and 

LCL) that define the expected range of variation. Data within 

these limits suggests normal operation (NOR), which 

indicates a stable and controlled process [5]. However, the 

emergence of patterns such as stratification (STR), 

systematic changes (SYS), mixtures (MIX), cycles (CYC), 

increasing (IT) or decreasing trends (DT), and shifts (US or 

DS) often point to process anomalies needing investigation. 

For example, cycles may result from predictable changes in 

environmental conditions or operations, while shifts could 

indicate modifications in the process or variations in input 

materials. Our study aims to distinguish these patterns with 

precision, understanding that each represents a unique 

disturbance that could impact production efficiency. As 

illustrated in Figure 1, differentiating these nine control chart 

patterns (CCPs) within the confines of the UCL and LCL is 

a complex task. Accurate identification is vital, as it informs 

necessary corrective actions to ensure ongoing process 

quality. This paper advances the field of SPC by addressing 

the challenge of pattern recognition, thereby facilitating 

better process management and efficiency. 

Precise recognition of CCPs is imperative due to their 

linkage with specific factors affecting manufacturing 

processes. Historically, CCPs have been analyzed manually, 

supplemented by additional rules such as zone tests or run 

rules to aid quality control engineers in identifying abnormal 

patterns [6]. However, these rules often result in excessive 

false alarms. Efforts to refine Expert Systems (ESs) for CCP 

recognition have been made, yet these systems typically 

suffer from low accuracy [7]. 

With advancements in computing, a variety of machine 

learning algorithms, including Support Vector Machines 

(SVM), Random Forests, diverse Artificial Neural Networks 

(ANN), and fuzzy systems, have been applied to CCP 

recognition with considerable success. Studies using raw 

data inputs with ANNs show varied efficacy. For example, a 

Multilayer Perceptron Neural Network (MLPNN) with a 

backpropagation (BP) algorithm was utilized for CCP 

recognition, considering six CCP types [8], achieving 

93.73% accuracy, improved to 97.73% with the Extended 

Delta-Bar-Delta [9]. Notably, MLPNN reached an accuracy 

of 99.45% when recognizing six CCP types, excluding shift 

patterns which simplifies recognition [10]. 

The Learning Vector Quantization (LVQ) network, 

combined with the Bee Algorithm (BA) for training, 

demonstrated accuracies of 92.31% and 95.47%, indicating 

BA's enhanced performance over traditional algorithms [11]. 

The use of a Wavelet Neural Network (WNN) achieved a 

97.70% accuracy, benefiting from the Mexican Hat mother 

wavelet as the activation function, which provided 

advantages such as a faster training process and improved 

convergence [12]. Similarly, a Probability Neural Network 

(PNN) [13] and a Spiking Neural Network (SNN) were 

explored, with the latter classifying eight CCPs at an 

accuracy of 98.61% [14]. 

The challenge of classifiers becoming overly complex 

when using raw data is addressed by employing new, 

effective inputs, as shown in pattern recognition studies. 

Nine shape features extracted from CCPs were used to 

achieve accuracies of 94.3% and 99.00% with MLPNN [15]. 

Subsequent research [16] improved performance by 

selecting the most effective features, resulting in a MLPNN 

with an accuracy of 99.38% using the Scaled Conjugate 

Gradient (SCG) algorithm. New shape features were 

introduced to improve the differentiation between trend and 

shift patterns, with studies showing significant 

advancements in recognition accuracy, particularly when 

eight CCPs were considered [17]. A new feature introduced 

specifically for distinguishing increasing trends from upward 

shifts and decreasing trends from downward shifts showed a 

marked impact on pattern separation [18]. 

Statistical feature extraction, despite its requirement for 

a large number of observations, was leveraged to 

discriminate six CCPs with a 96.79% accuracy using an 

MLPNN trained with gradient descent [19]. The synergy of 

shape and statistical features further enhanced CCP 

recognition, exemplified by an optimized Radial Basis 

Function Neural Network (RBFNN) achieving 98.73% 

accuracy [20]. Additionally, Multi-Resolution Wavelet 

Analysis (MRWA) was employed to attenuate noise and 

reduce input dimensionality, aiding the classification of 

various CCPs [21]. Clustering algorithms like Fuzzy C-

Means (FCM) were utilized to create new, effective feature 

sets, leading to satisfactory results [22, 23]. A Random 

Forest (RF) algorithm was shown to outperform MLPNN in 

handling large datasets, with the former recognizing eight 

CCPs with a 99.00% accuracy [24]. 
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A comprehensive review of existing literature reveals 

that the efficacy of CCP recognition is substantially 

influenced by the nature of the input data and the 

classification algorithm employed. Advanced inputs, 

encompassing shape, statistical, time-frequency, and fuzzy-

logic-derived features, have been instrumental in achieving 

enhanced accuracy in CCP identification. These inputs 

provide a multidimensional perspective of the data, enabling 

classifiers to discern subtle nuances between different 

patterns more effectively. 

The choice of classifier is equally critical. While ANNs 

and support vector machines are predominantly used due to 

their versatility and robust learning capabilities, they are not 

without drawbacks. ANNs, for instance, can be prone to 

overfitting, requiring a careful balance between network 

complexity and generalization. Moreover, the black-box 

nature of ANNs can lead to challenges in interpretability, 

which is crucial for trust and reliability in industrial 

applications. SVMs, although effective in high-dimensional 

spaces, may struggle with large datasets and require 

significant parameter tuning to optimize performance. 

To address these challenges, recent studies have explored 

alternative classifiers that could potentially offer more 

reliable performance and intuitive understanding of CCPs. 

For example, ensemble methods like Random Forests 

provide a means to mitigate the overfitting problem of ANNs 

by aggregating the predictions of multiple decision trees, 

thereby improving accuracy and robustness. Similarly, 

advancements in optimization algorithms for fuzzy systems 

are paving the way for classifiers that combine the logical 

rule-based approach of fuzzy systems with the adaptive 

learning capabilities of neural networks. 

The quest for optimal CCP recognition continues to drive 

innovation in input feature engineering and classifier design. 

Future research aims to not only improve recognition 

accuracy but also to build trust and interpretability in 

automated quality control systems. By refining these 

systems, industries can ensure higher quality standards, 

reduce downtime, and optimize production processes. This 

paper proposes an efficient method based on an optimized 

Adaptive Neuro-Fuzzy Inference System (ANFIS) with a 

minimal feature set for recognizing nine CCPs. This method 

extends beyond the commonly studied six patterns (NOR, 

CYC, IT, DT, US, DS) to include three additional patterns 

(STR, SYS, MIX) due to their importance in comprehensive 

process monitoring. ANFIS merges the benefits of ANNs 

and fuzzy logic systems and has been successfully applied in 

various fields, including pattern recognition and forecasting 

[25-27]. 

The structure of this paper is designed to guide the reader 

through our comprehensive methodology and findings in a 

logical sequence. Section two presents a brief discussion of 

the ANFIS classifier and optimization algorithm. In section 

three, we delineate the proposed method, providing a step-

by-step explanation of our approach and its theoretical 

underpinnings. Section four is dedicated to showcasing the 

results obtained from our empirical studies, illustrating the 

effectiveness of the proposed method in various scenarios. 

Finally, section five synthesizes the overall insights derived 

from the research, drawing conclusions and suggesting 

avenues for future work in the domain of CCP recognition. 

2. Core Concepts and Computational Tools 

2.1. Classifier 

Adaptive Neuro-Fuzzy Inference System, ANFIS, is a 

class of artificial neural networks that is fundamentally a 

fuzzy inference system (FIS) realized in the framework of 

adaptive networks. ANFIS synergizes the human-like 

reasoning style of fuzzy systems with the learning 

capabilities of neural networks. At its core, ANFIS employs 

a set of fuzzy if-then rules and a corresponding membership 

function to model the non-linear relationships inherent in 

complex data sets. Each if-then rule corresponds to a fuzzy 

model that maps inputs onto a membership value between 0 

and 1, reflecting the degree to which the inputs satisfy the 

linguistic terms of the rule. These membership functions, 

often Gaussian or bell-shaped, are adaptable and can change 

shape during the training process to better fit the data. 

The architecture of ANFIS is akin to a multilayer 

feedforward neural network. It typically consists of five 

layers: a fuzzification layer that converts crisp inputs into 

degrees of membership, a rules layer that applies the fuzzy 

if-then rules, a normalization layer that balances the rule 

strengths, a defuzzification layer that converts the fuzzy 

results back into crisp values, and an output layer that sums 

the outputs of each rule to produce the final result. The 

learning process in ANFIS is carried out using a hybrid 

algorithm that combines the least squares method and the 

backpropagation gradient descent method. This dual 

approach allows for the fine-tuning of the membership 

functions’ parameters, optimizing the system's performance. 

The learning mechanism of ANFIS is what distinguishes it 

from other fuzzy inference systems, providing a robust 

framework for solving problems where the mathematical 

model is unknown or too complex to define. 

2.2 Optimization Algorithm  

Optimization plays a pivotal role in modern engineering 

and various scientific domains, serving as the linchpin for 

enhancing efficiency and performance. In recent years, 

nature-inspired algorithms have gained significant traction. 

These algorithms, celebrated for their robustness and 

adaptability, have revolutionized the way complex 

engineering problems are approached, offering innovative 

solutions across diverse fields [28-30]. 

The Harris Hawks Optimization, HHO algorithm,  is an 

emerging nature-inspired metaheuristic optimization 

methodology, proposed by Heidari et al. in 2019 [31]. It is 

inspired by the cooperative behavior and chasing style of 

Harris hawks in nature known as "surprise pounce". The 

algorithm mimics the hawks’ cooperative strategy and their 

tactical surprise attacks on prey, which are often dynamic 

and require adaptive tactics. HHO represents candidate 

solutions to an optimization problem as hawks, and the 

optimization process models how hawks interact and learn 

from their attempts to capture prey. The algorithm is 

particularly noted for its ability to balance exploration and 

exploitation phases effectively. During the exploration 

phase, hawks randomly search for prey based on their 

positions and the prey's escape energy, which is an abstract 

concept representing the prey's remaining energy. 
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Figure 2. Categorization of Nine Control Chart Patterns Using Slope-Based Clustering with HHO-ANFIS Outputs and Additional 

Descriptors (StD, NC1, NC2) for Enhanced Pattern Identification 

 
In the exploitation phase, the HHO algorithm employs 

several strategies derived from the nature of the surprise 

pounce. This includes soft besiege, hard besiege, soft besiege 

with progressive rapid dives, and hard besiege with 

progressive rapid dives. The soft besiege occurs when prey 

has enough energy to escape and hawks encircle it softly, 

whereas a hard besiege is applied when the prey's energy is 

low, leading to a more aggressive encirclement. The rapid 

dives are stochastic plunges towards the prey, with variations 

in the attack pattern depending on the prey's energy. The 

mathematical model underpinning these behaviors involves 

adaptive and stochastic elements that enable the hawks to 

adjust their positions intelligently within the search space, 

ensuring global convergence and avoiding local optima 

traps. The HHO algorithm has demonstrated impressive 

performance across various complex and high-dimensional 

optimization problems [31-33]. 

3. Proposed Methods 

In this study, we present an innovative approach for the 

recognition of nine distinct CCPs. The essence of this 

method lies in the strategic harnessing of both shape and 

statistical descriptors to construct a feature set with high 

discriminative power. These descriptors have been carefully 

selected based on their proven effectiveness in pattern 

characterization and recognition. Specifically, we utilize the 

slope (S) of the least-square line fitting the data points of the 

pattern, as proposed by Pham and Wani [15]. This slope 

serves as a primary indicator of trend within the pattern. The 

method also includes the standard deviation (StD) of the 

pattern points [19], which quantifies the spread of the data 

around the mean, a crucial factor in identifying variability. 

We analyze the number of times the pattern crosses the mean 

line (NC1) and the least-square line (NC2), as these crossings 

can signify shifts or cycles in the process [15]. Another 

attribute employed is the slope difference (SD) between the 

least-square line and individual line segments of the pattern 

[15], highlighting changes in the trend's direction and 

intensity. The area between the pattern and its least-square 

line (APSL) is also used [15], reflecting the overall deviation 

from the identified trend. Furthermore, we incorporate a 

novel feature, MVSASTI, which is the maximum value of 

the variation in signal amplitude over a short time interval, 

to capture abrupt changes in pattern dynamics. 

To capitalize on the recognized capability of ANFIS in 

pattern recognition scenarios, we employ it as the classifier. 

The ANFIS is fine-tuned using the HHO algorithm, resulting 

in a hybrid model referred to as HHO-ANFIS. The system 

integrates five HHO-ANFIS units, each tasked with a portion 

of the recognition process. Every individual HHO-ANFIS is 

calibrated to identify specific types of patterns using a 

tailored subset of the described features, thereby enhancing 

the accuracy and efficiency of the overall pattern recognition 

task. 

Signal slopes are utilized to categorize and distinguish 

nine patterns into three distinct categories, as depicted in 

Figure 2. Observation reveals that the categories are 

delineated based on the slope characteristic of their signals, 

with the first category encompassing NOR, STR, SYS, MIX, 

and CYC; the second category containing IT and US; and the 

third comprising DT and DS. Within this framework, the 

HHO-ANFIS model generates three distinct outputs. For 

instance, an output vector of [1 0 0] from the ANFIS 

indicates that the input signal is associated with the first 

category, signifying it could be NOR, STR, SYS, MIX, or 

CYC. To refine classification within this category, additional 

descriptors such as StD, the NC1, and the NC2 are employed. 

Figure 2 elaborates on the role of these descriptors in aiding 

the fuzzy model's classification process. To further 

discriminate patterns in the second and third clusters, other 

shape features such as SD, APML, APSL, and MVSASTI 

are used as inputs for other ANFIS classifiers. These 

additional features are instrumental in effectively separating 

IT from US in the second category, and DT from DS in the 

third. In total, five ANFIS classifiers are meticulously 

trained to classify the CCPs into their respective nine classes, 

ensuring a comprehensive and precise pattern recognition 

system. 
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4. Results 

In this section, we detail the outcomes of our simulation 

studies. The simulations were conducted utilizing the robust 

capabilities of MATLAB's Fuzzy Logic and Signal 

Processing toolboxes. These specialized toolboxes provided 

the necessary computational environment to implement and 

evaluate the complex algorithms essential for our analysis. 

4.1. Data 

In this section, we evaluate the performance of the 

proposed pattern recognition system. Using the equations 

delineated by [5], we produced 500 samples for each control 

chart pattern. The characteristics and relationships of these 

samples are systematically outlined in Table 1, including the 

pivotal parameter P, which denotes the juncture at which a 

pattern shift is observed. To ascertain the efficacy and 

reliability of our recognition method, we implemented a 3-

fold cross-validation technique. This method is particularly 

chosen for its ability to enhance the robustness of 

performance evaluation. It mitigates potential overfitting by 

validating the model on different subsets of the dataset, 

ensuring that each sample is part of the test set once and the 

training set twice. Moreover, this approach allows for 

maximizing the usage of the data for training and testing 

purposes, a critical factor when dealing with limited datasets. 

By averaging the evaluation metrics over three distinct 

iterations, we attain a more comprehensive understanding of 

the model's predictive performance and its ability to 

generalize beyond the training data. 

 
Table 1. Parameters for simulating control chart patterns 

CCP Pattern parameters Pattern equations 

NOR Mean (𝜇) 

Std deviation (𝜎) 

𝑦𝑖 = 𝜇 + 𝑟𝑖𝜎 

𝜇 = 80, 𝜎 = 5 

 

STR Random noise (𝜎′) 

 

 

𝑦𝑖 = 𝜇 + 𝑟𝑖𝜎′ 

0.2𝜎 ≤ 𝜎′ ≤ 0.2𝜎 

SYS Systematic departure 

(d) 

 

𝑦𝑖 = 𝜇 + 𝑟𝑖𝜎 + 𝑑 × (−1)𝑖 

1𝜎 ≤ 𝑑 ≤ 3𝜎 

MIX  

 

 

𝑦𝑖 = 𝜇 + 𝑟𝑖𝜎 + (−1)𝑤𝑚 

1.5𝜎 ≤ 𝑚 ≤ 2.5𝜎 

CYC Amplitude (a) 

Period (T) 

 

 

𝑦𝑖 = 𝜇 + 𝑟𝑖𝜎 + 𝑎𝑠𝑖𝑛(2𝜋𝑖 𝑇⁄ ) 

1.5𝜎 ≤ 𝑎 ≤ 2.5𝜎 

8 ≤ 𝑇 ≤ 16 

IT Gradient (g) 

 

 

𝑦𝑖 = 𝜇 + 𝑟𝑖𝜎 + 𝑖𝑔 

0.05𝜎 ≤ 𝑔 ≤ 0.1𝜎 

DT Gradient (g) 

 

 

𝑦𝑖 = 𝜇 + 𝑟𝑖𝜎 − 𝑖𝑔 

−0.1𝜎 ≤ 𝑔 ≤ −0.05𝜎 

US Shift magnitude (s) 

Shift position (P) 

 

 

 

𝑦𝑖 = 𝜇 + 𝑟𝑖𝜎 + 𝑘𝑠 

𝑘 = 1  𝑖𝑓 𝑖 ≥ 𝑃, 𝑒𝑙𝑠𝑒 𝑘 = 0  
1.5𝜎 ≤ 𝑠 ≤ 2.5𝜎 

15 ≤ 𝑃 ≤ 45 

DS Shift magnitude (s) 

Shift position (P) 
𝑦𝑖 = 𝜇 + 𝑟𝑖𝜎 − 𝑘𝑠 

𝑘 = 1  𝑖𝑓 𝑖 ≥ 𝑃, 𝑒𝑙𝑠𝑒 𝑘 = 0  
−2.5𝜎 ≤ 𝑠 ≤ −1.5𝜎 

15 ≤ 𝑃 ≤ 45 

 

4.2. Impact of Learning Algorithm and Input Variation on 

ANFIS Performance 

This segment details a comparative analysis between the 

performance of the standard ANFIS and its optimized 

counterpart, HHO-ANFIS. The standard ANFIS utilizes the 

backpropagation (BP) algorithm for learning purposes. Our 

experimental setup involved the use of both unprocessed 

data and a composite of shape and statistical features as 

inputs for the ANFIS. The shape features are derived from 

the work described in [15] and [17], featuring sets of nine 

and thirty attributes, respectively, and the statistical features 

are taken from [19], encompassing six distinct attributes. We 

directed these various datasets through a singular classifier 

to discern the influence of input types on the system's 

efficacy. The results from these trials are systematically 

organized in Table 2, which distinguishes between 

conventional ANFIS and the HHO-ANFIS, the latter 

employing the Harris Hawks Optimization algorithm for 

enhanced learning. The optimized ANFIS, when fed with 

shape features from [15], achieved an optimal performance 

with a 98.22% success rate. This outcome underscores the 

substantial impact that both the choice of input data and the 

learning algorithm have on the proficiency of machine 

learning models. Notably, the implementation of the HHO 

algorithm has markedly elevated the ANFIS's capability to 

classify patterns. Additionally, the variation in inputs led to 

a range of performance metrics, thereby establishing the 

critical nature of both the learning algorithm and input 

selection in the realm of machine learning. 

 
Table 2. Evaluation of ANFIS performance with different inputs 

Classifier Input Input 

size 

Acc (%) 

ANFIS Raw data 60 93.44 

HHO -ANFIS Raw data 60 96.11 

ANFIS Shape features  

[15] 

9 97.46 

HHO -ANFIS Shape features 

 [15] 

9 98.22 

ANFIS Shape features  

[17] 

30 96.87 

HHO -ANFIS Shape features  

[17] 

30 98.04 

ANFIS Statistical features  

[19] 

6 95.82 

HHO -ANFIS Statistical features  

[19] 

6 97.81 

 

To provide a comprehensive evaluation of the pattern 

recognition capabilities of the optimized classifier, we have 

presented the confusion matrix for the best-performing 

model—HHO-ANFIS using 30 shape features as inputs—in 

Table 3. The confusion matrix is a vital tool in machine 

learning for visualizing the performance of a classification 

algorithm. It is a tabular representation that allows us to 

pinpoint the exact nature of misclassifications between 

various classes. Each row of the matrix represents the 

instances in an actual class, while each column represents the 

instances in a predicted class. The diagonal cells of the 

matrix correspond to correct predictions, where the predicted 

class aligns with the actual class. 

Accuracy, a key metric derived from the confusion 

matrix, is calculated as the sum of correct predictions (the 
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diagonal elements) divided by the total number of instances. 

In the context of our study, the confusion matrix has revealed 

notable challenges in distinguishing between closely related 

patterns such as NOR, STR, SYS, MIX, and CYC, as well as 

between US and IT, and DS and DT. The off-diagonal cells 

in these specific areas of the matrix provide insight into the 

instances where the classifier confuses one pattern for 

another. These insights are crucial for understanding the 

limitations of the classifier and for guiding future 

improvements to the classification system. The overall 

accuracy, quantifying the proportion of total correct 

predictions, reflects the classifier's ability to correctly 

identify the nine distinct patterns, despite the inherent 

difficulty in differentiating similar pattern types. 98.22% 

 

 
Table 3. Confusion matrix for HHO -ANFIS with nine shape 

features 

 
 

4.3. Performance of HHO-ANFIS 

The experiments detailed in the preceding subsection 

underscore the significant impact that the choice of training 

algorithm has on the accuracy of an ANFIS model. In light 

of this, the HHO algorithm was selected to train the ANFIS 

in our proposed method due to its superior optimization 

capabilities. The confusion matrix further revealed 

challenges in distinguishing patterns that bear close 

resemblance to each other. To address this issue, we 

incorporated a combination of statistical and shape features 

in a strategic manner. The application of these features was 

key to enhancing the pattern discrimination power of the 

method. Consequently, the employment of the proposed 

approach led to a notable increase in recognition accuracy, 

achieving a remarkable rate of 99.6%, thereby affirming the 

method's efficacy. 

Table 4 showcases the confusion matrix for our method, 

illustrating a substantial improvement in correct recognition 

rates. This improvement can be attributed to the judicious 

selection and utilization of feature sets, which enabled the 

model to effectively differentiate between the patterns, 

particularly those within clusters 2 and 3 that were 

previously challenging to segregate. In addition to 

heightened accuracy, the proposed method also 

demonstrated a lower standard deviation (SD) in recognition 

rates, achieving an SD value of zero. This denotes not only 

enhanced precision in pattern recognition but also a 

consistent performance across various iterations of the 

model, highlighting the robustness of the proposed approach. 

Table 4. Confusion matrix for proposed method 

 

4.4. Comparison and Discussion 

Control charts (CCs) serve as fundamental instruments in 

quality and process management. With the advent of 

advanced computer-based technologies, the implementation 

of CCs within processes has become increasingly 

straightforward. Modern systems enable real-time or even 

online data collection and analysis, either through 

microcomputers or network terminals directly at production 

sites. In the realm of CCP recognition, researchers have 

developed various methodologies that employ an assortment 

of classifiers, feature sets, and different numbers of CCPs. 

The diversity of CCPs considered, the variety of databases 

used, and the disparate ratios of training to testing data across 

studies complicate direct comparisons. Hence, we have 

collated and reported the outcomes from the literature to 

present a contextual understanding of these methods. Table 

8 juxtaposes various approaches, examining the number of 

CCPs considered, the types of inputs used, classification 

accuracy, and the classifiers employed. 

 
Table 5. Comparative analysis of various classification algorithms 

highlighting their corresponding accuracy metrics 

Ref CCPs Input type Acc 

(%) 

[34] 3 Unprocessed data 94.00 

[35] 6 Unprocessed data 95.00 

[15] 6 Unprocessed data 94.30 

[15] 6 Shape feature 99.00 

[9] 6 Unprocessed data 97.73 

[19] 6 Statistical features 96.79 

[36] 6 Shape feature 97.75 

[11] 6 Unprocessed data 92.31 

[11] 6 Unprocessed data 95.47 

[12] 6 Unprocessed data 97.70 

[37] 6 Frequency features 99.37 

[24] 8 Unprocessed data 99.00 

[38] 6 Frequency and statistical 99.48 

Proposed 

method 

9 Shape and statistical 

features 

99.6 

 

Many studies have historically focused on a subset of six 

CCP types: NOR, CYC, IT, DC, US, and DS, tailoring 

feature extraction techniques specifically for discerning 

among these patterns. For instance, the shape features 

introduced in [17] are not designed to segregate more 

complex patterns like STR, SYS, or MIX from others. While 

some studies have extended the scope to seven or eight 

CCPs, these typically yield lower classification accuracies. 
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According to the synthesized results in Table 6, it is evident 

that our proposed HHO-ANFIS method is unique in its 

ability to recognize all nine CCPs with a high degree of 

accuracy. This underscores the efficacy of HHO-ANFIS and 

highlights the importance of both the learning algorithm and 

the intelligent application of feature types in enhancing the 

recognition process. Our proposed method not only shows 

superiority in the accurate distinction of patterns, especially 

within clusters 2 and 3 but also demonstrates remarkable 

stability, as indicated by a consistently low standard 

deviation in classification performance. 

5. Conclusion 

The accurate identification of CCPs is an imperative task 

within the sphere of industrial quality control. Patterns that 

deviate from the norm on control charts often signal 

assignable causes that could disrupt process stability, 

potentially compromising product quality. The ability to 

precisely recognize these patterns is therefore paramount in 

maintaining high-quality production standards. In this 

research, we have developed and proposed a novel intelligent 

method for the automated recognition of CCPs. Through 

extensive experimentation, we have rigorously evaluated the 

performance of this method. The results consistently indicate 

that our method outperforms existing approaches, marking a 

significant advancement in the field of CCP recognition. 

The core contributions of our study lie in the intelligent 

integration of shape and statistical features, the optimal 

training of the ANFIS using the HHO algorithm, and the 

comprehensive inclusion of nine distinct CCPs, 

encompassing both common and complex patterns. Our 

approach not only enhances the accuracy of pattern 

recognition but also contributes to a deeper understanding of 

process dynamics through advanced pattern analysis. The 

proposed method's success in accurately classifying a full 

spectrum of CCPs represents a substantial leap forward, 

offering a robust tool for industries aiming to uphold the 

highest quality standards in their manufacturing processes. 
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