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The aim of this study is to determine the optimal operating conditions of a beta-type Stirling 

engine and the main factors affecting these conditions. The main factors affecting the engine 

power are engine speed (750-900 rpm), pressure (6-8 bar) and temperature (600-700 °C). 

Experimental design was conducted applying Box-Behnken Design, to obtain engine power 

values via selected factors. In addition, these experiments were carried out on a beta-type 

Stirling engine with a regenerator, which has not been previously studied in the literature. 

The engine power was analyzed using the Response Surface Method and Artificial Neural 

Network, and the most appropriate model was achieved. The desirability function approach 

was used to determine the optimal engine operating conditions and the optimum values of 

the main factors of pressure, engine speed and temperature were determined to be 8 bar, 900 

rpm and 650 °C, respectively. Under optimal engine operating conditions, the engine power 

was determined to be 56.736 W. Besides, the Determination Coefficient (R2) and Mean 

Square Error values for the Response Surface Method were 0.898 and 6.47, respectively, 

while for the Artificial Neural Networks method, they were 0.975 and 2.11, respectively. 

The results obtained indicate that the developed Artificial Neural Network model is an 

acceptable and more powerful modeling technique than the Response Surface Method for 

predicting power values of the beta-type Stirling engine. 

 

1. Introduction 

The world's energy demand is increasing day by day with the 

increase in population density in the world, and most of this 

demand is still met by fossil fuels. Fossil fuels are the 

primary source of CO2 and greenhouse gas emissions into 

the atmosphere. Greenhouse gases, exhaust gases and carbon 

dioxide emissions from the use of fossil fuels cause human 

health and environmental concerns. At the same time, these 

gases increase the temperature by trapping heat in the 

atmosphere and cause climate change [1], [2].  
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The World Health Organization (WHO) has stated that 

climate change is the biggest threat to human and 

environmental health in the 21st century [3], [4]. For this 

reason, instead of fossil fuels, the use of renewable, clean 

systems that can work with solar energy, geothermal energy, 

etc., which are available in the world, has increased 

considerably. Stirling engines, which can work with all kinds 

of heat energy and use clean energy sources, are one of these 

systems. The basic principle of Stirling engines is based on 

obtaining mechanical energy through temperature difference 

at low pressures. Thus, with Stirling engines, high energy 
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production can be achieved by using alternative resources by 

reducing the use of environmentally harmful fuels [5], [6]. 

Stirling engines are a focal point of research due to their 

remarkable energy conversion efficiency. The interest in 

these engines is on the rise, driven by the escalating costs and 

dwindling reserves of fossil fuels. Stirling engines have the 

versatility to operate with various working fluids, including 

air, helium, nitrogen, and hydrogen. They are theorized to 

possess superior thermal efficiency and emit lower levels of 

pollutants, thereby reducing environmental damage [7], [8]. 

Furthermore, throughout literature, the Stirling engine stands 

out for its high level of performance [2], [9]. 

Correspondingly, the use of fossil fuels such as gas, oil and 

coal in the world in terms of terawatt-hours of electricity 

capacity obtained in the places where energy production is 

made according to years is given in Figure 1 below. As can 

be seen from this figure, it is clear that it is very important to 

develop new engine designs in terms of statistical and energy 

conversion systems. 

 

Figure 1. Fossil fuel consumption in the world by years [10]. 

In addition, Response Surface Methodology (RSM), 

which is one of the methods of design of experiments, is used 

in many fields such as engineering, technology, medicine, 

food, chemistry, etc. with the aim of optimization, that is, 

obtaining the most appropriate working conditions of the 

created systems and ensuring maximum efficiency. RSM is 

very important in terms of determining the experimental 

variables in research, knowing what effects these variables, 

which are thought to be effective on the response variable, 

have, and creating mathematical model designs appropriate 

to the results. As a result of the analysis made with this 

method, considerable savings can be achieved in terms of 

time, product and cost [11]. In addition, the Artificial Neural 

Network (ANN) method, which has been shown as an 

alternative to this method in recent years, has attracted 

considerable attention. Although ANN does not require the 

assumptions required in the RSM, it has a working system 

similar to the nerve cells in the human brain and its ability to 

learn has become more used by researchers than alternative 

techniques [12]. 

The aim of integrating statistics with engineering 

principles is to enhance the power output of the beta-type 

Stirling engine developed by researchers, utilizing parameter 

values derived from operational conditions through 

statistical techniques. This endeavor seeks to engineer more 

potent engines functioning under ideal conditions, thus 

encouraging the adoption of eco-friendly technologies. RSM 

presents several benefits over traditional full factorial design 

experiments, including a reduction in the number of tests 

required and decreased time consumption [13]. Furthermore, 

an effective statistical mathematical approach known as 

RSM, which employs the Box-Behnken Design (BBD) 

based on RSM, is deployed for optimizing experimental 

conditions. This is achieved by determining the analytical 

relationships and interactions between dependent (response) 

and independent (factor) variables. Notably, this technique 

encompasses 3 to 7 factors at three levels (low, medium, and 

high), facilitating the generation of comprehensive data sets 

through fewer experimental combinations. This approach 

enables researchers to easily acquire response variables [14], 

[15]. Another category that has recently been used to 

characterize various processes in terms of mathematical 

relationships is modeling using ANN. Polynomial 

regression-based modeling approaches such as RSM that 

model complex nonlinear relationships can be effectively 

replaced by ANN. Also, ANN models incorporate all 

experimental data points and are therefore theoretically more 

accurate [16], [17]. The modeling process of an ANN 

involves selecting the network architecture, determining the 

hidden layers and the number of neurons in each layer, 

learning, training, and final stage, verification, and validation 

of the model. However, there are studies using these two 

methods on Stirling engines. Masoumi et al. [18] constructed 

a genetic-fuzzy control scheme for an active free-piston 

Stirling engine (AFPSE) and obtained a hybrid intelligent 

converter that is robust to parameter changes. The main 

factors for the optimal operating condition with respect to the 

power piston in the open-loop engine system were selected 

as the sink and source temperatures, the power piston mass, 

and the stiffness of the power piston’s spring. First, a brief 

description of the mathematical equations governing the 

open-loop AFPSE was given. Then, an optimal fuzzy 

controller for the engine is derived. At the end of the study, 

simulation and practical results demonstrated the feasibility 

of designing a new intelligent AFPSE (IAFPSE). Moreover, 

based on the obtained practical results, it was shown that the 
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IAFPSE was robust to changes in the power piston mass and 

the operating frequency was intelligently tuned between 5.4 

Hz and 4.3 Hz, respectively, while the power piston mass 

varies between 0.6 kg and 1 kg.  Ozgoren et al. [8] used an 

Artificial Neural Network to predict the power (P) and torque 

(T) values obtained from a beta-type Stirling engine using air 

as the working fluid. The closest neural network results to 

the experimental torque and power values were obtained 

with two hidden layers 5-13-9-1 and 5-13-7-1 network 

architectures, respectively. The best prediction values were 

obtained using the Levenberg-Marquardt learning algorithm. 

The Determination Coefficient (R2) for torque values were 

0.998331 and 0.997231 for the training and test sets, 

respectively, while the R2 values for power values were 

0.998331 and 0.997231 for the training and test sets, 

respectively. The R2 values obtained showed that the 

developed neural network is an acceptable and powerful 

modeling technique for predicting the torque and power 

values of the beta-type Stirling engine. Besides, Solmaz et 

al. [2] developed a statistical model to evaluate the effect of 

engine operating parameters on the performance 

characteristics of a beta-type Stirling engine. The aim of the 

study was to increase the specific power of the engine by 

increasing the compression ratio of the engine designed and 

manufactured in a previous study. The independent variables 

selected were charge pressure (2-9 bar), heating temperature 

(500-700 °C) and engine speed (550-750 rpm). The engine 

was analyzed using a design of experiments based on the 

Response Surface method and the optimal model was 

obtained.  The optimum engine speed, charge pressure and 

heating temperature were determined as 700 rpm, 8 bar and 

700 °C, respectively, and their desired value was found to be 

0.86. At the optimum engine operating conditions, the brake 

torque and brake power were found to be 11.95 Nm and 

868.13 W, respectively. The optimized parameters were then 

validated by comparing with the experimental data of the 

Stirling engine and found to be 4%. The specific power of 

the engine was found to be 1100 W/L, which is 13% higher 

than the previous design.  

In general, when the literature is examined, there are 

studies that have been carried out with ANN and RSM 

method using Stirling engine experimental data. However, 

these studies have been carried out exclusively ANN and 

RSM method. In this study, unlike these studies, which have 

separate examples in the literature, both methods are used 

and statistical comparisons of these methods are included. 

Besides, due to the applicability of the analyses and the need 

for fewer experiment observation values, it has been revealed 

that they are very functional methods in determining the 

optimum operating conditions of the Stirling engine. In this 

way, it has been determined that less costly conditions and 

statistical models can be created during the development 

phase of the newly produced regenerator engine. This 

research focuses on maximizing the performance metrics for 

the power output of the beta-type Stirling engine using the 

RSM with BBD and ANN. The objective is to optimize the 

engine's performance, compare the effectiveness of these 

two methods, develop the most accurate mathematical 

model, and identify which method yields the lowest error 

rate. To achieve this, variables believed to influence engine 

power, such as engine speed (rpm), pressure (bar), and 

temperature (°C), were assigned to different levels. 

Experiments were carried out on a Stirling engine equipped 

with a regenerator, and the values of the response variables 

were collected and analyzed using statistical techniques. 

2. Materials and Methods 

In this research, the effect of the specified factors on the 

power output of a beta-type Stirling engine equipped with a 

regenerator is investigated experimentally. In addition, the 

experimental setup and operation of the Beta Type Stirling 

engine are visually explained in Figure 2. The methodologies 

used to analyze the data obtained from the experiments using 

the Stirling engine are described in detail in the following 

sections. 

Figure 2. Schematic illustration of the experimental setup. 

2.1. Response Surface Method (RSM) 

This section discusses determining optimal engine power 

conditions to maximize performance. Optimization of 

independent parameters (factors) was performed using RSM 

based on BBD [2], [19]. Design of experiment model was 

carried out according to BBD that involves three 

independent variables (engine speed, pressure, and 
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temperature), each with three levels, and engine power was 

chosen as the response variable (see Table 1). The resulting 

design matrix consists of 17 experimental runs and is shown 

in Table 2.  In addition, the experiments were carried out in 

one replicate.  

 

 

Table 1.  Factors and factor levels 

No. Factor  Name Factor Level 

     -1    0   +1 

  1    A Pressure (bar)    6    7     8 

  2    B Engine Speed (rpm)  750  825   900 

  3    C Temperature (°C)  600  650   700 

 

In BBD, each factor has three levels. BBD are more 

economical than Central Composite Designs (CCD) because 

they theoretically require fewer factors and fewer factor 

levels. One of the advantages of BBD is that they are global 

and have only three levels of data. BBD are the result of 

combining an incomplete block design with an appropriate 

two-level multifactor design [20], [21]. One of the 

advantages of the BBD plan is that it is a global design and 

has only three levels of data. BBD are created by 

appropriately combining incomplete block designs and two-

stage multifactor designs [19]. In this context, the second 

order polynomial regression equation is used in the BBD 

method in order to theoretically form the regression equation 

and the relationship between engine power and independent 

variables is expressed according to Eq. (1). 

𝑦𝑒𝑛𝑔𝑖𝑛𝑒 𝑝𝑜𝑤𝑒𝑟 = 𝛽0 + ∑ 𝛽𝑎𝑥𝑎

𝑘

𝑎=1

+ ∑ 𝛽𝑎𝑎𝑥𝑎
2

𝑘

𝑎=1

+ ∑ ∑ 𝛽𝑎𝑏𝑥𝑎𝑏

𝑘

𝑎<𝑏

+ ⋯ + 𝜀 

(1) 

where 𝛽𝑎, 𝛽𝑖, and 𝛽𝑎𝑏  are the model coefficients, 𝑘 is the 

number of independent variables, 𝑥𝑎, 𝑥𝑎𝑏 , and 𝑥𝑎
2 represents 

linear and quadratic terms, respectively. Statistical analyses 

such as ANOVA, lack of fit, model graphs and summary 

statistics were applied to determine the suitability and 

accuracy of the model to be obtained [22], [23]. 

2.2. Artificial Neural Network (ANN) 

The architecture of Artificial Neural Networks basically 

consists of three main points. İnitially, the number of layers 

should be decided, then the optimal number of neurons in 

each layer should be selected, afterwards the model should 

be created by deciding on the training algorithm and transfer 

function. In this research, the neural network examined 

includes three inputs, i.e., pressure, engine speed and 

temperature and one output the engine power [24]. In this 

research, a feed-forward, back-propagation multilayered 

perceptron (MLP) network architecture was created, the 

Levenberg-Marquardt (LM) algorithm was selected and the 

tangent sigmoid transfer function (Tanh), which is widely 

used in the literature, was utilized as the transfer function. 

Besides, since there are three independent variables and one 

dependent variable, the ANN design was formed as 3-4-4-1 

with two hidden layers and four neurons as a result of the 

experiments. The mean square error (MSE) and 

determination coefficient (R2), given in Eq. 2 and Eq. 3, were 

used to evaluate the performance of the ANN and BBD [19]. 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟(𝑀𝑆𝐸)

=
1

𝑛
∑(𝑦𝑖,𝑒𝑥 − 𝑦𝑖,𝑝𝑟)2

𝑛

𝑖=1

 
(2) 

 

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝑅2)

= 1 −
∑ (𝑦𝑖,𝑝𝑟 − 𝑦𝑖,𝑒𝑥)2𝑛

𝑖=1

∑ (𝑦𝑖,𝑝𝑟 − 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒)2𝑛
𝑖=1

 
(3) 

where, 𝑦𝑖,𝑝𝑟 represents the predicted value of the i.th 

experiment calculated by model, 𝑦𝑖,𝑒𝑥 stands for the target 

value of the i.th experiment (or experimental value), 𝑛 is the 

total number of experiments, and 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒  denotes the 

average of values from the model [25], [26]. 

3. Results and Discussion 

3.1. Optimization and Modelling of Beta-Type Stirling 

Engine Using RSM 

The BBD method was used to obtain the optimal 

operating conditions of Stirling engine according to the 

selected factors. The response variable values obtained by 

using the BBD design matrix, and the prediction values 

found for ANN and BBD methods are given in Table 2. In 

addition, the quadratic regression equation obtained by the 

experimental design method is given in Eq. 4 and the 

ANOVA results are presented in Table 3. 
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Table 2.  BBD and ANN values for engine power 

No. Pressure (bar) Engine Speed (rpm) Temperature (°C) 

Engine Power 

(Actual) 

 

Predicted Values 

with RSM 

Predicted Values 

with ANN 

1 7 825 650 44.73 43.97 44.24 

2 6 825 700 45.59 43.81 45.71 

3 8 825 600 51.17 52.95 55.80 

4 7 825 650 43.52 43.97 44.24 

5 7 825 650 44.28 43.97 44.24 

6 8 825 700 52.38 52.69 52.48 

7 7 750 700 41.34 40.24 41.30 

8 7 900 700 38.62 41.18 38.43 

9 6 825 600 46.62 46.31 43.83 

10 7 750 600 40.63 38.07 40.56 

11 7 900 600 45.02 46.12 44.51 

12 7 825 650 42.18 43.97 44.24 

13 8 750 650 41.32 42,10 41.48 

14 7 825 650 45.16 43.97 44.24 

15 6 750 650 41.61 44.48 41.62 

16 6 900 650 39.62 38.84 42.23 

17 8 900 650 59.61 56.74 59.58 

𝑦𝑒𝑛𝑔𝑖𝑛𝑒 𝑝𝑜𝑤𝑒𝑟 = 43.97 + 3.88𝐴 + 2.25𝐵 − 0.69𝐶 + 5.07𝐴𝐵 + 0.56𝐴𝐶 − 1.78𝐵𝐶 + 4.55𝐴2

− 2.99𝐴2 + 0.41𝐶2 
(4) 

 

Table 3. ANOVA results for engine power 

Source Sum of Squares df Mean Square F-value p-value 

Model 401.45 9 44.61 6.89 0.0093 

A-Pressure 120.44 1 120.44 18.61 0.0035 

B-Engine Seed 40.37 1 40.37 6.24 0.0411 

C-Temperature 3.80 1 3.80 0.5865 0.4688 

AB 102.82 1 102.82 15.89 0.0053 

AC 1.25 1 1.25 0.1939 0.6730 

BC 12.64 1 12.64 1.95 0.2049 

A² 87.24 1 87.24 13.48 0.0079 

B² 37.54 1 37.54 5.80 0.0469 

C² 0.7225 1 0.7225 0.1117 0.7480 

Error 45.29 7 6.47   

Lack of Fit 39.80 3 13.27 9.65 0.0265 

Pure Error 5.50 4 1.37   

Total 446.74 16    

R2 0.898     

Adj.-R2 0.768     
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Figure 3. (a) Effect of temperature and pressure parameters on engine power 

 

Figure 3. (b) Effect of engine speed and pressure parameters on engine power 

Figure 3. (c) Effect of temperature and engine speed on engine power 

Initially, tests for lack of fit, along with summary 

statistics for linear, quadratic, and cubic models concerning 

variables A, B, and C were conducted. This was to identify 

the model that, due to its insignificant lack of fit and the 

highest values of R² and adjusted R², best represented the 

quadratic model's response. Subsequently, ANOVA 

(Analysis of Variance) for the quadratic models was utilized 

to determine the statistically significant factors impacting the 
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model. Table 3, focusing on engine power as the response 

variable, revealed an impressive model F-value of 446.74, 

indicating that the models were in excellent agreement with 

the experimental data. 

On the other hand, p-values of independent variables are 

explanatory and not significant relative to the pure error. 

Therefore, a not-significant lack of fit is good and model is a 

fit for all responses. Finally, based on these, according to 

Table 3, it can be observed that the variables pressure and 

engine speed have a significant effect on engine power, with 

high F-values and low p-values. However, the temperature 

variable is not statistically significant due to its p-value 

(p=0.4688). 

Moreover, given the p-values of 0.0079 and 0.0469, it's 

evident that the quadratic effects of variables A and B 

significantly impact engine power, as both values fall below 

the threshold of 0.05. Furthermore, the presence of a high F-

value of 18.61 and 6.24 indicates that the main effects of 

pressure and engine speed, as well as their interaction, 

significantly contribute to the engine's power output. 

The experimental results and the predicted values 

obtained from the model showed that predicted values 

matched the experimental values reasonably well with 

R2=0.898 for engine power (see Table 3). It can be concluded 

that the high R2 value indicating that model was appropriate 

for predicting the exact correlation between both response 

and significant factors. Additionally, response surface plots 

(3D plot) that represent two variables at once while keeping 

all other variables at their center points are a more effective 

tool for understanding both the main effects and the 

interactions of these two variables. In order to understand 

how the variables interact and to determine the optimal level 

of each variable for the maximum response, the response 

surface curves (Figure 3) were plotted [27]. When Figure 

3(a). is examined, it is seen that the temperature has no effect 

on the engine power, but it is concluded that the engine 

power decreases with increasing pressure value. However, at 

7 bar and 650 degrees, which are the center points of the 

temperature and pressure variables, the engine power 

reached approximately the optimum value of 45.16 W. 

According to Figure 3(b), it is concluded that the engine 

power decreases with the increase in the values of the engine 

speed and pressure variables. Approximately and similarly, 

at a pressure of 7 bar and a temperature of 650 degrees, the 

engine power was 44.28 W. Finally, according to Figure 

3(c), it is concluded that the engine power increases with the 

increase of the engine speed, but the power starts to decrease 

at the maximum engine speed. At this point, the engine 

power reached 45.68 W. In conclusion, when the results of 

the analysis are examined in light of optimization, it can be 

interpreted that the maximum engine power is achieved with 

a pressure variable value of an 8 bar, engine speed of 900 

rpm, and a temperature value of 650 degrees, reaching 

56.736 W. 

3.2. Modelling of Beta-Type Stirling Engine Using ANN 

In addition to its ability to create mathematical models of 

linear relationships, the ANN is also a tool that is actively 

used for modeling and optimization of non-linear process 

variables [28]. In this research, as mentioned in Chapter 2.2, 

3-4-4-1 network architecture was created. In addition, the 

subsistence dataset was divided into training, validation, and 

test sets of 15%, 15% and 70% respectively. Figure 4 

illustrates the neural network structure used to analyze the 

Stirling engine, featuring an input layer that includes 

pressure, engine speed, and temperature, a hidden layer with 

4 neurons, and an output layer with a single neuron 

representing Stirling engine power. The regression 

coefficient values for training, validation, and testing phases, 

with respective R values of 0.978, 0.957, and 0.975, are also 

depicted in Figure 4. These R² values suggest a strong 

correlation between the experimental and estimated power 

outputs, indicating a good fit of the model [19]. Additionally, 

the ANN model's predicted R² and MSE values of 0.975 and 

0.81, respectively, further affirm the model's accuracy in 

predicting the engine's power output. 

 

Figure 4. ANN predicted model 

Both BBD and the ANN models were compared 

regarding their predictive capability engine power. The 

statistical parameters that measure and compare the accuracy 

of both models were estimated in Table 4. 

Table 4. BBD and ANN performance criteria values for Engine Power 

Methods BBD 
ANN 

Training Validation Test 

R2 0.898 0.979 0.957 0.975 

MSE 6.47 0.21 1.09 0.81 

 The use of artificial neural networks (ANN) in energy 

conversion systems has become an important research topic 
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in recent years. ANN has proven to be an effective tool in 

modeling and optimization of nonlinear process variables. 

For instance, in studies comparing RSM and ANN methods, 

it has been found that ANN generally provides higher 

accuracy. Patil et al. [29] used RSM and ANN methods to 

estimate and predict building energy performance. In this 

study, simple relationships were developed with the RSM 

method and more complex models were created with ANN. 

The results showed that ANN provides higher accuracy in 

predicting energy performance. Similarly, Dadrasi et al. [30], 

the energy absorption behavior of thin-walled steel columns 

was modeled using RSM and ANN. In the study, it was 

found that ANN provides higher accuracy than RSM in 

predicting energy absorption parameters. Correlatively, Rai 

et al. [31], RSM and ANN methods were used in the 

hydrolysis process of lignocellulose residues. In this study, 

ANN was found to have a better fit with experimental data 

and a higher R2 value. 

Examining RSM and ANN separately in the literature, 

Arevalo et al. [32] used RSM in the optimization of thermal 

energy storage systems and found that this method was very 

effective in increasing energy efficiency. In addition, 

Khazaee et al. [33] used direct methods to evaluate the 

stability of power systems and these methods have been 

shown to be effective in energy systems. However, 

Michailidis et al. [34] examined the use of ANN in building 

energy management systems and found that this method was 

effective in energy optimization, Yin et al. [35] examined the 

use of ANN in building energy consumption prediction 

models and emphasized the accuracy and reliability of this 

method. Lastly, Wan et al. [36] created a health index using 

vibration signals to predict the remaining life of bearings and 

combined convolutional neural network and bidirectional 

long short-term memory models, a method similar to the 

ANN used in this study, to estimate this index. Additionally, 

the probability density function (PDF) of remaining life was 

estimated using the Wiener process. In the study, the validity 

and superiority of the method was verified using the PHM 

2012 bearing data set. 

 In this context, as evident from the data presented in the 

above table, the use of ANN in the performance prediction 

of Stirling engines emphasizes the accuracy and 

generalization ability of this method, in line with other 

studies in literature. In our study, the accuracy and 

generalization ability of ANN were found to be higher 

compared to RSM. These results show that ANN is an 

effective tool in modeling and optimization of nonlinear 

process variables. 

4. Conclusions 

In this research, it is aimed to optimize the Stirling engine 

operating conditions by using the engine speed, pressure and 

temperature variables selected as the main factors and 

different levels related to these variables, the engine power 

is maximized and modeling is performed with ANN and 

BBD methods. As a result, the determination coefficient 

(R2=0.898) obtained with the BBD method was obtained as 

a very high value and the accuracy of the model and 

optimization was proved. This implies that the second-order 

response model matches the experimental data in an 

acceptable way. The ANN model was also established from 

the design of experiment and its results were compared via 

those of the BBD model. The ANN model exhibited better 

accuracy and generalization ability than BBD even in a 

limited number of experiments with R2 of 0.975. As a result, 

the point difference between the actual response and the 

ANN predicted value became significantly smaller. The 

Stirling engine operating conditions process model created 

by ANN had high accuracy and substantial performance and 

was widely accepted. In general, when the literature is 

examined, it is determined that ANN and RSM methods give 

better and acceptable results in creating of model and 

predicting the data. However, in terms of time and cost, it is 

concluded that the RSM method is practical in the field of 

engineering. Unlike literature, both methods are included in 

the applied study and evaluated in terms of their 

applicability. It was determined that the RSM method is 

more relevant for design of experiments, while the ANN 

method is more appreciable for statistical modeling. 

The higher performance of the ANN method, which has 

gained popularity and widespread use in recent years 

compared to classical methods, makes it a more suitable 

choice for modelling and predicting the response variable. 

Furthermore, the application of the aforementioned analyses 

to a variety of data sets obtained from the field of automotive 

engineering represents a future goal of the study. The ability 

to conduct a statistical analysis of data sets obtained from a 

different discipline has enabled the identification of 

important and significant factors, thereby allowing the use of 

different variables in the subsequent phase of the study.  
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